
ptg999

Exam Ref

Daniil Maslyuk

Analyzing
and Visualizing
Data with
Microsoft Power BI

70-778

Prepare for Microsoft Exam 70-778—and help demonstrate
your real-world mastery of Power BI data analysis and
visualization. Designed for experienced BI professionals and
data analysts ready to advance their status, Exam Ref focuses
on the critical thinking and decision-making acumen needed
for success at the MCSA level.

Focus on the expertise measured by these
objectives:
• Consume and transform data by using Power BI Desktop

• Model and visualize data

• Configure dashboards, reports, and apps in the Power BI Service

This Microsoft Exam Ref:
• Organizes its coverage by exam objectives

• Features strategic, what-if scenarios to challenge you

• Assumes you have experience consuming and transforming
data, modeling and visualizing data, and configuring dashboards
using Excel and Power BI

Analyzing and
Visualizing Data with
Microsoft Power BI
About the Exam
Exam 70-778 focuses on skills and
knowledge needed to connect to data
sources, perform transformations, and
cleanse data with Power BI Desktop;
create and optimize data models; create
calculated columns, tables, measures,
DAX queries, and performance
KPIs; establish hierarchies; work with
visualizations; manage custom reports;
access on-premises data; configure
dashboards, security, apps, and app
workspaces; and publish and embed
reports.

About Microsoft Certification
Passing this exam and Exam 70-779:
Analyzing and Visualizing Data with
Microsoft Excel earns your MCSA: BI
Reporting certification, demonstrating
your expertise in analyzing data with
both Power BI and Excel.

See full details at:
microsoft.com/learning

About the Author
Daniil Maslyuk (MCSA: BI Reporting;
MCSE: Data Management and Analytics) is
a Microsoft business intelligence consultant
who specializes in Power BI, Power Query,
and Power Pivot; the DAX and M lan-
guages; and SQL Server and Azure Analysis
Services tabular models. Daniil blogs at
xxlbi.com and tweets as @DMaslyuk.

Certifications/Data Management &
Analytics/Business Intelligence

MicrosoftPressStore.com

ISBN-13:
ISBN-10:

978-1-5093-0702-9
1-5093-0702-8

9 7 8 1 5 0 9 3 0 7 0 2 9

5 3 9 9 9

U.S.A. $39.99
Canada $49.99

[Recommended]

Exam Ref 70-778

M
aslyuk

Analyzing and Visualizing D
ata

w
ith M

icrosoft Pow
er BI

Exam
 R

ef
70-778

9781509307029_ExamRef_70-778_Analyzing_Visual_Data_MS_Power_BI_Cover.indd All Pages 5/4/18 7:14 AM

From the Library of zhanl mamykova

ptg999

Exam Ref 70-778
Analyzing and Visualizing
Data with Microsoft
Power BI®

Daniil Maslyuk

From the Library of zhanl mamykova

ptg999

Exam Ref 70-778 Analyzing and Visualizing Data with Microsoft Power BI

Published with the authorization of Microsoft Corporation by:
Pearson Education, Inc.

Copyright © 2018 by Pearson Education

All rights reserved. This publication is protected by copyright, and permission must be obtained from the publisher prior to
any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical,
photocopying, recording, or likewise. For information regarding permissions, request forms, and the appropriate contacts within
the Pearson Education Global Rights & Permissions Department, please visit www.pearsoned.com/permissions/. No patent
liability is assumed with respect to the use of the information contained herein. Although every precaution has been taken in the
preparation of this book, the publisher and author assume no responsibility for errors or omissions. Nor is any liability assumed for
damages resulting from the use of the information contained herein.

ISBN-13: 978-1-5093-0702-9
ISBN-10: 1-5093-0702-8

Library of Congress Control Number: 2018938487
1 18

Trademarks

Microsoft and the trademarks listed at https://www.microsoft.com on the “Trademarks” webpage are trademarks of the
Microsoft group of companies. All other marks are property of their respective owners.

Warning and Disclaimer

Every effort has been made to make this book as complete and as accurate as possible, but no warranty or fitness is implied.
The information provided is on an “as is” basis. The authors, the publisher, and Microsoft Corporation shall have neither
liability nor responsibility to any person or entity with respect to any loss or damages arising from the information contained
in this book or programs accompanying it.

Special Sales

For information about buying this title in bulk quantities, or for special sales opportunities (which may include electronic
versions; custom cover designs; and content particular to your business, training goals, marketing focus, or branding
interests), please contact our corporate sales department at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact intlcs@pearson.com.

Editor-in-Chief

Senior Editor

Development Editor

Managing Editor

Senior Project Editor

Editorial Production

Copy Editor

Indexer

Proofreader

Technical Editor

Cover Designer

Brett Bartow

Trina MacDonald

Rick Kughen

Sandra Schroeder

Tracey Croom

Backstop Media

Liv Bainbridge

Julie Grady

Katje Richstatter

Chris Sorensen

Twist Creative, Seattle

From the Library of zhanl mamykova

http://www.pearsoned.com/permissions/
https://www.microsoft.com

ptg999

To my wife, Dasha, who was very patient and supported me during
the writing process in every way she could.

—Daniil Maslyuk

From the Library of zhanl mamykova

ptg999

From the Library of zhanl mamykova

ptg999

Contents at a glance

Introduction xvii

Important: How to use this book to study for the exam xxi

CHAPTER 1 Consuming and transforming data by using
Power BI Desktop 1

CHAPTER 2 Modeling and visualizing data 83

CHAPTER 3 Configure dashboards, reports, and apps in the
Power BI Service 271

Index 333

From the Library of zhanl mamykova

ptg999

From the Library of zhanl mamykova

ptg999

vii

Contents

Acknowledgements xiii

Introduction xvii
Organization of this book . xvii

Microsoft certifications .xviii

Microsoft Virtual Academy .xviii

Quick access to online references .xviii

Errata, updates, & book support . xix

Stay in touch . xix

Important: How to use this book to study for the exam xxi

Chapter 1 Consuming and transforming data by using
Power BI Desktop 1

Skill 1.1: Connect to data sources .1

Connect to databases, files, and folders 2

Data connectivity modes 4

Importing data 5

DirectQuery 5

Implications of using DirectQuery 6

When to use DirectQuery 8

Live Connection 9

Connecting to Microsoft SQL Server 10

Connecting to Access database 12

Connecting to an Oracle database 13

Connecting to a MySQL database 15

Connecting to PostgreSQL database 15

Connecting to data using generic interfaces 17

Connecting to Text/CSV files 17

Connecting to JSON files 18

From the Library of zhanl mamykova

ptg999

viii Contents

Connecting to XML files 19

Connecting to a Folder 20

Connecting to a SharePoint folder 22

Connecting to web pages and files 22

Connecting to Azure Data Lake Store and Azure Blob Storage 24

Import from Excel . 25

Import data from Excel 25

Import Excel workbook contents 26

Connect to SQL Azure, Big Data, SQL Server Analysis Services (SSAS) 27

Connecting to Azure SQL Database and Azure SQL
Data Warehouse 27

Connecting to Azure HDInsight Spark 28

Connecting to SQL Server Analysis Services (SSAS) 28

Connecting to Power BI service 29

Skill 1.2: Perform transformations . 31

Design and implement basic and advanced transformations 32

Power Query overview 32

Using the Power Query Editor interface 35

Basic transformations 44

Advanced transformations 52

Appending queries 55

Merging queries 56

Creating new columns in tables 60

Apply business rules . 63

Change data format to support visualization 64

Skill 1.3: Cleanse data . 74

Manage incomplete data 74

Meet data quality requirements 75

Thought experiment . 77

Thought experiment answers . 79

Chapter summary . 79

From the Library of zhanl mamykova

ptg999

ixContents

Chapter 2 Modeling and visualizing data 83
Skill 2.1: Create and optimize data models . 83

Manage relationships 84

Optimize models for reporting 95

Manually type in data 102

Use Power Query 104

Skill 2.2: Create calculated columns, calculated tables, and measures 107

Create DAX formulas for calculated columns 107

Calculated tables 134

Measures 173

Use What-if parameters 205

Skill 2.3: Measure performance by using KPIs, gauges, and cards 206

Calculate the actual 207

Calculate the target 208

Calculate actual to target 213

Configure values for gauges 214

Use the format settings to manually set values 216

Skill 2.4: Create hierarchies . 217

Create date hierarchies 217

Create hierarchies based on business needs 219

Add columns to tables to support desired hierarchy 221

Skill 2.5: Create and format interactive visualizations 225

Select a visualization type 225

Configure page layout and formatting 238

Configure interactions between visuals 239

Configure duplicate pages 242

Handle categories that have no data 242

Configure default summarization and data
category of columns 242

Position, align, and sort visuals 245

Enable and integrate R visuals 247

Format measures 249

Use bookmarks and themes for reports 250

From the Library of zhanl mamykova

ptg999

x Contents

Skill 2.6: Manage custom reporting solutions . 255

Configure and access Microsoft Power BI Embedded 256

Enable developers to create and edit reports through
custom applications 257

Enable developers to embed reports in applications 257

Use the Power BI API to push data into a Power BI dataset 259

Enable developers to create custom visuals 261

Thought experiment . 262

Thought experiment answers . 266

Chapter summary . 267

Chapter 3 Configure dashboards, reports, and apps in the
Power BI Service 271

Skill 3.1: Access on-premises data . 271

Connect to a data source by using a data gateway 272

Publish reports to the Power BI service from Power BI Desktop 277

Edit Power BI service reports by using Power BI Desktop 277

Skill 3.2: Configure a dashboard . 279

Add text and images 279

Filter dashboards 282

Dashboard settings 283

Customize the URL and title 283

Enable natural language queries 284

Skill 3.3: Publish and embed reports . 291

Publish to web 291

Publish to Microsoft SharePoint 294

Publish reports to a Power BI Report Server 296

Skill 3.4: Configure security for dashboards, reports, and apps 302

Create a security group by using the Admin Portal 302

Configure access to dashboards and app workspaces 305

Configure the export and sharing setting of the tenant 309

Configure row-level security 312

From the Library of zhanl mamykova

ptg999

xiContents

Skill 3.5: Configure apps and apps workspaces . 320

Create and configure an app workspace 321

Publish an app 322

Thought experiment . 328

Thought experiment answers . 329

Chapter summary . 330

Index 333

From the Library of zhanl mamykova

ptg999

From the Library of zhanl mamykova

ptg999

xiiiIntroduction

Acknowledgements

I would like to thank Trina MacDonald for handling the project and giving me the opportunity
to write my first book, which turned out to be a very rewarding experience. Also, I would like

to thank all the people who helped making the book more readable and contain fewer errors:
Chris Sorensen, Rick Kughen, Liv Bainbridge, Troy Mott, and everyone else at Pearson who
worked on this book but I haven’t worked directly with.

A few people have contributed to my becoming a fan of Power BI. Gabriel Polo Reyes was
instrumental in my being introduced to the world of Microsoft BI. Thomas van Vliet, my first
client, hired me despite my having no prior commercial experience with Power BI and fed me
many problems that led to my mastering Power BI.

From the Library of zhanl mamykova

ptg999

From the Library of zhanl mamykova

ptg999

About the author

DANIIL MASLYUK (MCSA: BI Reporting; MCSE: Data Management and
Analytics) is a Microsoft business intelligence consultant who specializes in
Power BI, Power Query, and Power Pivot; the DAX and M languages; and SQL
Server and Azure Analysis Services tabular models. Daniil blogs at xxlbi.com
and tweets as @DMaslyuk.

From the Library of zhanl mamykova

ptg999

From the Library of zhanl mamykova

ptg999

xviiIntroduction

Introduction

The 70-778 exam focuses on using Microsoft Power BI for data analysis and visualization.
About one fourth of the exam covers data acquisition and transformation, which includes

connecting to various data sources by using Power Query, applying basic and advanced trans-
formations, and making sure that data adheres to business requirements. Approximately half
the questions are related to data modeling and visualization. Power BI is based on the same en-
gine that is used in Analysis Services, and the exam covers a wide range of data modeling topics:
managing relationships and hierarchies, optimizing data models, using What-if parameters, and
using DAX to create calculated tables, calculated columns, and measures. The exam also covers
selecting, creating and formatting visualizations, as well as bookmarks and themes. The remain-
der of the exam covers sharing data by using dashboards, reports, and apps in Power BI service.
Furthermore, the exam tests your knowledge on managing custom reporting solutions, using
Power BI Report Server, configuring security, and keeping your reports up to date.

This exam is intended for business intelligence professionals, data analysts, and report
creators who are seeking to validate their skills and knowledge in analyzing and visualizing
data with Power BI. Candidates should be familiar with how to get, model, and visualize data in
Power BI Desktop, as well as share reports with other people.

This book covers every major topic area found on the exam, but it does not cover every
exam question. Only the Microsoft exam team has access to the exam questions, and Microsoft
regularly adds new questions to the exam, making it impossible to cover specific questions.
You should consider this book a supplement to your relevant real-world experience and other
study materials. If you encounter a topic in this book that you do not feel completely comfort-
able with, use the “Need more review?” links you’ll find in the text to find more information
and take the time to research and study the topic. Great information is available in blogs and
forums.

Organization of this book

This book is organized by the “Skills measured” list published for the exam. The “Skills mea-
sured” list is available for each exam on the Microsoft Learning website: http://aka.ms/examlist.
Each chapter in this book corresponds to a major topic area in the list, and the technical tasks
in each topic area determine a chapter’s organization. If an exam covers six major topic areas,
for example, the book will contain six chapters.

From the Library of zhanl mamykova

http://aka.ms/examlist

ptg999

xviii Introduction

Microsoft certifications

Microsoft certifications distinguish you by proving your command of a broad set of skills and
experience with current Microsoft products and technologies. The exams and corresponding
certifications are developed to validate your mastery of critical competencies as you design
and develop, or implement and support, solutions with Microsoft products and technologies
both on-premises and in the cloud. Certification brings a variety of benefits to the individual
and to employers and organizations.

MORE INFO ALL MICROSOFT CERTIFICATIONS

For information about Microsoft certifications, including a full list of available certifications,
go to http://www.microsoft.com/learning.

Check back often to see what is new!

Microsoft Virtual Academy

Build your knowledge of Microsoft technologies with free expert-led online training from Mi-
crosoft Virtual Academy (MVA). MVA offers a comprehensive library of videos, live events, and
more to help you learn the latest technologies and prepare for certification exams. You’ll find
what you need here:

http://www.microsoftvirtualacademy.com

Quick access to online references

Throughout this book are addresses to webpages that the author has recommended you visit
for more information. Some of these addresses (also known as URLs) can be painstaking to
type into a web browser, so we’ve compiled all of them into a single list that readers of the print
edition can refer to while they read.

Download the list at https://aka.ms/examref778/downloads

The URLs are organized by chapter and heading. Every time you come across a URL in the
book, find the hyperlink in the list to go directly to the webpage.

From the Library of zhanl mamykova

http://www.microsoft.com/learning
http://www.microsoftvirtualacademy.com
https://aka.ms/examref778/downloads

ptg999

xixIntroduction

Errata, updates, & book support

We’ve made every effort to ensure the accuracy of this book and its companion content.
You can access updates to this book—in the form of a list of submitted errata and their related
corrections—at:

https://aka.ms/examref778/errata

If you discover an error that is not already listed, please submit it to us at the same page.

If you need additional support, email Microsoft Press Book Support at
mspinput@microsoft.com.

Please note that product support for Microsoft software and hardware is not offered
through the previous addresses. For help with Microsoft software or hardware, go to
http://support.microsoft.com.

Stay in touch

Let’s keep the conversation going! We’re on Twitter: http://twitter.com/MicrosoftPress.

From the Library of zhanl mamykova

https://aka.ms/examref778/errata
http://support.microsoft.com
http://twitter.com/MicrosoftPress

ptg999

From the Library of zhanl mamykova

ptg999

xxiIntroduction

Important: How to use this book to study for the exam
Certification exams validate your on-the-job experience and product knowledge. To gauge
your readiness to take an exam, use this Exam Ref to help you check your understanding of the
skills tested by the exam. Determine the topics you know well and the areas in which you need
more experience. To help you refresh your skills in specific areas, we have also provided “Need
more review?” pointers, which direct you to more in-depth information outside the book.

The Exam Ref is not a substitute for hands-on experience. This book is not designed to teach
you new skills.

We recommend that you round out your exam preparation by using a combination of avail-
able study materials and courses. Learn more about available classroom training at
http://www.microsoft.com/learning. Microsoft Official Practice Tests are available for many
exams at http://aka.ms/practicetests. You can also find free online courses and live events from
Microsoft Virtual Academy at http://www.microsoftvirtualacademy.com.

This book is organized by the “Skills measured” list published for the exam. The
“Skills measured” list for each exam is available on the Microsoft Learning website:
http://aka.ms/examlist.

Note that this Exam Ref is based on this publicly available information and the author’s
experience. To safeguard the integrity of the exam, authors do not have access to the exam
questions.

From the Library of zhanl mamykova

http://www.microsoft.com/learning
http://aka.ms/practicetests
http://www.microsoftvirtualacademy.com
http://aka.ms/examlist

ptg999

From the Library of zhanl mamykova

ptg999

 1

C H A P T E R 1

Consuming and transforming
data by using Power BI
Desktop
The Power BI development cycle is divided into four parts: data discovery, data modeling,

data visualization, and distribution of reports. Each
stage requires its own skill set. We cover data modeling and
visualization skills in Chapter 2, “Modeling and visualizing
data,” and report distribution in Chapter 3, “Configure
dashboards, reports, and apps in the Power BI Service.” In
this chapter, we review the skills you need to consume data
in Power BI Desktop. Power BI has a rich set of features
available for data shaping, which enables the creation of
sophisticated data models. We start with the steps required
to connect to various data sources. We then review the
basic and advanced transformations available in Power BI
Desktop, as well as ways to combine data from distinct data sources. Finally, we review some
data cleansing techniques.

Skills in this chapter:
 ■ Skill 1.1: Connect to data sources

 ■ Skill 1.2: Perform transformations

 ■ Skill 1.3: Cleanse data

Skill 1.1: Connect to data sources

Before you model or visualize any data, you need to prepare and load it into Power BI, creat-
ing one or more connections to data sources. Power BI can connect to a wide variety of data
sources, and the number of supported data sources grows every month. Furthermore, Power
BI allows you to create your own connectors, making it possible to connect to virtually any
data source.

I M P O R T A N T

Have you read
page xxi?
It contains valuable
information regarding
the skills you need to pass
the exam.

From the Library of zhanl mamykova

ptg999

 2 CHAPTER 1 Consuming and transforming data by using Power BI Desktop

MORE INFO DATA CONNECTORS IN POWER BI

You can keep up with all the new Power BI features, including new connectors, on the of-
ficial blog at https://powerbi.microsoft.com/en-us/blog/. For more details on how you can
create your own data connectors, see “Getting Started with Data Connectors” at https://
github.com/Microsoft/DataConnectors.

The data consumption process begins with an understanding of business requirements and
data sources available to you. For instance, if your users need near real-time data, your data
consumption process is going to be drastically different compared to working with data that is
going to be periodically refreshed. Not all data sources support the near real-time experience,
which is called DirectQuery, and comes with its own limitations.

This section covers how to:
 ■ Connect to databases, files, and folders

 ■ Import from Excel

 ■ Connect to SQL Azure, Big Data, SQL Server Analysis Services (SSAS)

Connect to databases, files, and folders
Databases, files, and folders are some of the most common data sources used when connect-
ing to data in Power BI. Power BI can connect to the following databases:

 ■ SQL Server database

 ■ Access database

 ■ SQL Server Analysis Services database

 ■ Oracle database

 ■ IBM DB2 database

 ■ IBM Informix database (Beta)

 ■ IBM Netezza (Beta)

 ■ MySQL database

 ■ PostgreSQL database

 ■ Sybase database

 ■ Teradata database

 ■ SAP HANA database

 ■ SAP Business Warehouse database

 ■ Amazon Redshift

 ■ Impala

 ■ Snowflake

From the Library of zhanl mamykova

https://powerbi.microsoft.com/en-us/blog/
https://github.com/Microsoft/DataConnectors
https://github.com/Microsoft/DataConnectors

ptg999

 Skill 1.1: Connect to data sources CHAPTER 1 3

 ■ ODBC

 ■ OLE DB

Power BI can also connect to the following file types:

 ■ Excel

 ■ Text/CSV

 ■ XML

 ■ JSON

Files can also be connected to in bulk mode through the following folder connectors:

 ■ Folder

 ■ SharePoint folder

 ■ Azure Blob Storage

 ■ Azure Data Lake Store

To connect to a data source, you need to click the Home tab and select Get Data in the Ex-
ternal Data group. Clicking the text portion of the button opens a drop-down list with the most
common data sources. When you click More in the drop-down list, the full Get Data window
opens.

The window, shown in Figure 1-1, is divided into two parts: on the left, you can select data
source types, which includes File, Database, Azure, Online Services, and Other. On the right,
there is a list of data sources. Above the left pane, there is a search bar with which you can
search for data sources.

FIGURE 1-1 Get Data window

From the Library of zhanl mamykova

ptg999

 4 CHAPTER 1 Consuming and transforming data by using Power BI Desktop

Before going any further, let’s discuss the various data connection options that are available,
because choosing one may prevent you from switching to the other after you start developing
your data model.

Data connectivity modes
The most common way to consume data in Power BI is by importing it to the data model.
When you import data in Power BI, you create a copy of it that is kept static until you refresh
your dataset. Currently, data from files and folders can only be imported in Power BI. When it
comes to databases, there are two ways in which you can make data connections. The two data
connectivity options are shown in Figure 1-2.

FIGURE 1-2 An example data connection window with the option to choose between Import
and DirectQuery

First, you can import your data into Power BI, which copies data into the Power BI data
model. This method offers you the greatest flexibility when you model your data because you
can use all available features in Power BI.

Second, you can connect to your data directly in its original source. This method is known
as DirectQuery. With DirectQuery, data is not kept in Power BI. Instead, the original data
source is queried every time you interact with Power BI visuals. Not all data sources support
DirectQuery.

A special case of DirectQuery called Live Connection exists for SQL Server Analysis
Services (both Tabular and Multidimensional), as well as the Power BI Service. We will cover
LiveConnection in more detail later in this chapter.

From the Library of zhanl mamykova

ptg999

 Skill 1.1: Connect to data sources CHAPTER 1 5

Importing data
When you import data, you load a copy of it into Power BI. Because Power BI is based on an
in-memory engine called VertiPaq (also known as xVelocity), the imported data consumes
both the RAM and disk space, because data is stored in files. During the development phase,
the imported data consumes the disk space and RAM of your development machine. Once you
publish your report to a server, the imported data consumes the disk space and RAM of the
server to which you publish your report. The implication of this is that you can’t load more data
into Power BI than your hardware allows.

You have an option to transform data when you import it in Power BI, limited only by the
functionality of Power BI. If you only load a subset of tables from your database, and you apply
filters to some of the tables, only the filtered data gets loaded into Power BI.

Once data is loaded into the Power BI cache, it is kept in a compressed state, thanks to the
VertiPaq engine. The compression depends on many factors, including data type, values, and
cardinality of the columns. In most cases, however, data will take much less space once it is
loaded into Power BI compared to its original size.

One of the advantages of this data connection method is that you can use all of the
functionality of Power BI without restrictions, including all transformations available in Power
Query Editor, as well as all DAX functions when you model your data.

Additionally, you can use data from more than one source in the same data model. For
example, you can load some data from a database and some data from an Excel file. You can
then either combine them in the same table in Power Query Editor or relate the tables in the
data model.

Another advantage of this method is the speed of calculations. Because the VertiPaq engine
stores data in-memory in a compressed state, there is little to no latency when accessing the
data. Additionally, the engine is optimized for calculations, resulting in the best computing
speed.

DirectQuery
When you use the DirectQuery method, you are not loading any data into Power BI. All the
data remains in the data source, except for metadata, which Power BI keeps. Metadata includes
column and table names, data types, and relationships. For most data sources supporting
DirectQuery, when connecting to a data source, you select the structures you want to con-
nect to, such as tables or views. Each structure becomes a table in your data model. With some
sources, such as SAP Business Warehouse, you only select a database, not specific tables or
other structures.

With this method, Power BI only serves as a visualization tool. As a result, the Power BI file
size will be negligible compared to a file with imported data.

From the Library of zhanl mamykova

ptg999

 6 CHAPTER 1 Consuming and transforming data by using Power BI Desktop

At the time of this writing, only the following databases support DirectQuery connectivity.

 ■ Amazon Redshift

 ■ Azure HDInsight Spark (Beta)

 ■ Azure SQL Database

 ■ Azure SQL Data Warehouse

 ■ Google BigQuery (Beta)

 ■ IBM Netezza (Beta)

 ■ Impala (version 2.x)

 ■ Oracle Database (versions 12 and above)

 ■ SAP Business Warehouse (Beta)

 ■ SAP HANA

 ■ Snowflake

 ■ Spark (Beta) (versions 0.9 and above)

 ■ SQL Server

 ■ Teradata Database

 ■ Vertica (Beta)

The main advantage of this method is that you are not limited by the hardware of your de-
velopment machine or of the server to which you will publish your report. All data is kept in the
data source, and all the calculations are done in the source as well. Using DirectQuery entails
some implications to the available functionality.

Implications of using DirectQuery
There are a number of implications that occur when using DirectQuery.

Report performance varies
When using DirectQuery, the report performance depends on the underlying source hard-
ware. If it can return queries in fewer than five seconds, then the experience is bearable, yet still
might feel slow to users who are accustomed to the speed of the native VertiPaq engine. If the
data source is not fast enough, the queries might even time out, making the report unusable.
Whether the data source can handle the additional load from querying should also be consid-
ered. With DirectQuery, each visual a user interacts with sends a query to the data source, and
this happens to every user who is working with a report at the same time.

Only one data source may be used at a time
DirectQuery can only use one data source at a time. Unlike importing data, it is not possible to
combine data from multiple sources. For example, if you need to use a table from an Excel file
in your report, you need to load it into the same data source that you are using.

From the Library of zhanl mamykova

ptg999

 Skill 1.1: Connect to data sources CHAPTER 1 7

Range of data transformations is limited
The range of data transformations that can be applied to data is limited with DirectQuery. For
OLAP sources, such as SAP Business Warehouse, no transformations can be applied, and the
entire model is used as a data source. For relational data sources, such as SQL Server, some
transformations can still be applied, although they are quite limited due to performance
considerations when compared to transformations available with imported data. The transfor-
mations need to be applied every time there is an interaction with a visual, not once per data
refresh, as in the case of importing data. Only those transformations that can be efficiently
translated to the data source query language are allowed. In case you try to apply transforma-
tions that are not allowed, you will get an error (Figure 1-3) and be prompted to either cancel
the operation or import data.

FIGURE 1-3 Unsupported by DirectQuery transformation error

Not every query type is usable
Not every kind of query can be used in DirectQuery mode. When a user interacts with a visual
in a report that uses DirectQuery, all of the necessary queries to retrieve the data are combined
and sent to the data source. For this reason, it is not possible to use native queries with Com-
mon Table Expressions or Stored Procedures.

Data modeling is limited
The data modeling experience has its limitations in DirectQuery as well. Data modeling in-
cludes the creation of measures, calculated columns, hierarchies, and relationships; renaming
and hiding columns; formatting measures and columns; defining default summarization and
sort order of columns.

 ■ By default, measures are limited only to those that are not likely to cause any perfor-
mance issues. If you author a potentially slow measure, you will get an error like the fol-
lowing: “Function ‘SUMX’ is not supported in this context in DirectQuery mode.” If you
want to lift the restriction, click File > Options and settings > Options > DirectQuery
> Allow Unrestricted Measures In DirectQuery Mode. This allows you to write any
measure, given that it has a valid expression.

 ■ With DirectQuery, there are no built-in date tables that are created for every date/date-
time column like in Import mode by default. Date tables are required for Time Intel-
ligence calculations, and if the data source has a date table, it can instead be used for
Time Intelligence purposes.

 ■ Calculated columns are limited in two ways. First, they can only use the current row of
the table or a related row in a many-to-one relationship, which rules out all aggregation

From the Library of zhanl mamykova

ptg999

 8 CHAPTER 1 Consuming and transforming data by using Power BI Desktop

functions. Second, calculated columns can use only some of the functions that return
scalar values. More specifically, only functions that can be easily translated into a data
source’s native language are supported. For example, you can create a “Month Name”
column in a Sales table with RELATED function, but you cannot count the number of
rows in the Sales table for each row in the Date table in a calculated column because
that would require an aggregation function COUNTROWS. Usually, IntelliSense,
Microsoft’s autocomplete feature, will list only the supported functions.

 ■ Parent-child functions, such as PATH, are not supported in DirectQuery. If you need to
create a hierarchy of employees or chart of accounts, consider building it in the data
source.

 ■ Calculated tables are not supported in DirectQuery mode. Consider creating a view in
the data source in case you need a dynamic table.

Security limitations
There are security limitations to DirectQuery. Currently, when you publish a report that is using
DirectQuery, it will have the same fixed credentials that you specify in Power BI service. This
means that all users will see the same data unless the report is using the Row Level Security
feature of Power BI.

Underlying data changes frequently
You should keep in mind that if the underlying data is changing frequently, there is no guaran-
tee of visuals displaying the same data due to the nature of DirectQuery. To display the latest
data, visuals need to be refreshed. Metadata, if changed in the source, is only updated after a
refresh in the Power BI Desktop.

When to use DirectQuery
To get the best user experience, you should import data if you can. There are two situations in
which you may consider DirectQuery over importing data.

First, if the size of the data model is too large to fit into memory, DirectQuery may be a
viable option. You should keep in mind that performance will depend on the data source’s
hardware.

Second, if the underlying data changes frequently, and reports must always show the most
recent data, then DirectQuery could be the solution. Again, the data source must be able to
return the results in a reasonable amount of time. Otherwise there might not be a point in
querying the latest data.

Both issues could potentially be addressed by Live Connection.

From the Library of zhanl mamykova

ptg999

 Skill 1.1: Connect to data sources CHAPTER 1 9

Live Connection
A special case of DirectQuery for SQL Server Analysis Services and Power BI service is called
Live Connection. It differs from DirectQuery in some ways:

 ■ It is not possible to define relationships in Live Connection.

 ■ You cannot apply any transformations to data.

 ■ Data modeling is limited to only creating measures for SQL Server Analysis Services
Tabular and Power BI service. The measures are not restricted in any way.

You may consider using Live Connection over importing data because of the enhanced data
modeling capabilities and improved security features in the data source. More specifically, un-
like DirectQuery, Live Connection considers the username of the user that is viewing a report,
which means security can be set up dynamically. Additionally, SQL Server Analysis Services can
be configured to refresh as frequently as needed, unlike a Schedule Refresh in Power BI service
that is limited to eight times a day on a Pro license and 48 times a day with Power BI Premium.

Table 1-1 summarizes the similarities and differences between three data connectivity
modes.

TABLE 1-1 Data connectivity modes compared

Category Import data DirectQuery Live Connection

Data model size
limitation

Tied to license;
Power BI Pro: 1 GB limit per
dataset;
Power BI Premium: capacity
based

Limited only by underlying
data source hardware

SQL Server Analysis
Services: Limited only by
underlying data source
hardware;
Power BI service: same data-
set size limits as Import Data

Number of data
sources

Unlimited Only one Only one

Data refresh Tied to license;
Power BI Pro: up to 8 times a
day at 30 min intervals;
Power BI Premium: up to 48
times a day at 1 min intervals

Report shows the latest data
available in the source

Report shows the latest data
available in the source

Performance Best Slowest Best

Data transforma-
tion

Fully featured Limited to what can be
translated to data source
language

None

Data modeling Fully featured Highly restricted SSAS Tabular and Power BI
Service: measures can be
created without restrictions

Security Row-level security can be
applied based on current
user login

Cannot use row-level secu-
rity defined at data source;
Row-level security must be
done in Power BI Desktop

Can leverage data source
security rules based on cur-
rent user’s login

From the Library of zhanl mamykova

ptg999

 10 CHAPTER 1 Consuming and transforming data by using Power BI Desktop

NOTE DIRECTQUERY IN POWER BI

For more details on the advantages and limitations of DirectQuery in Power BI, see “Power
BI and DirectQuery” at https://powerbi.microsoft.com/en-us/documentation/powerbi-desk-
top-directquery-about/.

EXAM TIP

Be prepared to answer when DirectQuery or Live Connection data connectivity modes are
appropriate based on a client’s business requirements.

Connecting to Microsoft SQL Server
To connect to Microsoft SQL Server, click Get Data > SQL Server Database. You will then
see the window in Figure 1-2. In it, you must specify a server name, and you have an option to
specify a database name. You must then choose between Import and DirectQuery data con-
nectivity modes.

If you expand Advanced options, you can specify a custom timeout period in minutes and a
SQL statement to run. If you write a SQL statement, you must specify a database.

Below the SQL statement input area, there are three check boxes.

 ■ Include relationship columns First, you can include or exclude the relationship col-
umns. This option checks if a table has any relationships with other tables and includes
expandable relationship columns in Power Query Editor. This might be useful if you
want to denormalize your data and save an extra step of merging tables in Power Query
Editor. The default selection is include.

 ■ Navigate using full hierarchy Second, you can enable or disable navigation with a
full hierarchy. With the option enabled, you can navigate from the server down to data-
bases, then schemas, and finally objects within schemas. With the option disabled, you
navigate from the server to the databases, and then all objects from all schemas. The
default selection is disable.

 ■ Enable SQL Server Failover support Third, you can enable or disable SQL Server
Failover support. With this option enabled, you can benefit from local high availability
through redundancy at the server-instance level by leveraging Windows Server Failover
Clustering. The default selection is disable.

Once you click OK to connect, the credentials window opens, and you have two options for
authentication: Windows and Database. If you choose Windows, you can either select to use
the current user credentials or specify alternate credentials. After you specify credentials and
click Connect, you might get a prompt on Encryption Support; you can click OK to connect
without encryption.

The Navigator window then opens, where you can choose objects to add to the data model.
The window, which can be seen in Figure 1-4, is divided into two parts. On the left side, you

From the Library of zhanl mamykova

https://powerbi.microsoft.com/en-us/documentation/powerbi-desktop-directquery-about/
https://powerbi.microsoft.com/en-us/documentation/powerbi-desktop-directquery-about/

ptg999

 Skill 1.1: Connect to data sources CHAPTER 1 11

see a list of all the objects you can choose. For SQL Server, you can choose tables, views, scalar
functions, and table functions. Note that you cannot select stored procedures, even if they re-
turn tables. When you select an item, you can click Select Related Tables if you want to select
all tables that are related to the selected table.

FIGURE 1-4 The Navigator window

Selecting an object brings up a preview of data inside the object. If you select a function for
preview, you will need to specify one or more parameters to see a data preview. Note how you
are not limited to choosing objects from one database only (unless you specified a database in
the initial connection settings).

After selecting the desired objects, you can either load data directly to the data model
without any transformations by clicking Load, or you can apply transformations in Power
Query Editor by clicking Edit. If you choose the latter option, you will then need to click Close
& Apply to load data into Power BI data model.

If you select objects from more than one database, Power BI will create a connection
string for each database. You can access the list of connections either from the Home tab;
External Data group in the main Power BI window by clicking on the text portion of

From the Library of zhanl mamykova

ptg999

 12 CHAPTER 1 Consuming and transforming data by using Power BI Desktop

Edit Queries > Data Source Settings; or from the Power Query Editor by clicking the Home
tab and selecting Data Source Settings in the Data Sources group.

When you load data, Power BI shows the activities associated with each query, such as:

 ■ Evaluating

 ■ Waiting for other queries

 ■ Creating connection in model

 ■ Loading data to model

 ■ Detecting relationships

If one of the queries fails, other queries will not load. After data loading is finished, each
query appears as a table with columns in the Fields pane.

Power BI supports connections to SQL Server starting with SQL Server 2005.

Connecting to Access database
To connect to the Access database, select Get Data > Access Database. You will then be
prompted to specify the database file in the Open window. Note that you can open the file
in read-only mode if necessary. After you select the file and click Open, a Navigator window
comes up with the list of available objects.

You can then select the objects you want to include in your data model. Afterward, you can
either load the objects directly into the data model by clicking Load or apply transformations
by clicking Edit. If you click Edit, you will be able to click on the cog wheel next to the Source
step in Query Settings. Doing so opens a window where you can specify advanced settings
(Figure 1-5).

FIGURE 1-5 Advanced Access database connection settings

From the Library of zhanl mamykova

ptg999

 Skill 1.1: Connect to data sources CHAPTER 1 13

In advanced settings, you can choose whether you want to include relationship columns in
tables, which are included by default. You can also compose the file path from parts. Each part
can contain a fixed subset of the file path or reference to a parameter.

Power BI supports connections to all versions of Access database files, except password-
protected ones. The provider version, however, needs to be at least ACE 2010 SP1.

NOTE INSTALLING THE NECESSARY DRIVERS

If you lack the necessary drivers, you may see an error message similar to the following:
“DataSource.NotFound: Microsoft Access: The ‘Microsoft.ACE.OLEDB.12.0’ provider is not
registered on the local machine. The 64-bit version of the Access Database Engine 2010 Ac-
cess Database Engine OLEDB provider may be required to read ‘AdventureWorks.accdb.’”

The required software can be downloaded from Microsoft at https://www.microsoft.com/
en-us/download/confirmation.aspx?id=13255.

Connecting to an Oracle database
To connect to an Oracle database, select Get Data > Oracle Database. If you are connecting
to an Oracle database for the first time, you might see a message indicating your provider is
out of date, and you might want to consider upgrading it. For the connection to be success-
ful, you need to have the correct Oracle client software installed, depending on the version of
Power BI Desktop you are running—32-bit or 64-bit. To find out which version you have, select
File > Help > About, then look at the Version line.

NOTE INSTALLING THE CORRECT ORACLE CLIENT SOFTWARE

If you need 32-bit Oracle client software, you can download it from Oracle at http://www.
oracle.com/technetwork/topics/dotnet/utilsoft-086879.html. In case you need 64-bit soft-
ware, you can also download it from Oracle at http://www.oracle.com/technetwork/data-
base/windows/downloads/index-090165.html.

Once you open the initial connection settings window (Figure 1-6), the experience is very
similar to SQL Server connection settings. There are only two differences at this stage: first, you
cannot specify a database to connect to. And second, there is no option to enable SQL Server
Failover support. If you need to specify SID in addition to the server name, you can specify it
with a forward slash after the server name. For example, ServerName/SID.

From the Library of zhanl mamykova

https://www.microsoft.com/en-us/download/confirmation.aspx?id=13255
https://www.microsoft.com/en-us/download/confirmation.aspx?id=13255
http://www.oracle.com/technetwork/topics/dotnet/utilsoft-086879.html
http://www.oracle.com/technetwork/topics/dotnet/utilsoft-086879.html
http://www.oracle.com/technetwork/data-base/windows/downloads/index-090165.html
http://www.oracle.com/technetwork/data-base/windows/downloads/index-090165.html

ptg999

 14 CHAPTER 1 Consuming and transforming data by using Power BI Desktop

FIGURE 1-6 Oracle database connection settings window

Once you specify the required parameters and click OK, you are taken to the credentials
window. You have the same options as with SQL Server: either Windows or Database; for the
former, you can either use the current user’s credentials or specify alternate credentials.

After you specify the credentials, the Navigator window opens, where you can choose the
objects for inclusion in the data model. If you chose to navigate using full hierarchy, the sche-
mas appear with folder icons in the Navigator window. In an Oracle database connection, only
tables and views can be selected.

Finally, you have an option of loading the database objects right away by clicking Load; if
you wish to apply transformations before loading, you will need to click Edit, which will take
you to the Power Query Editor.

Power BI supports connections to Oracle databases starting with Oracle 9; the provider
needs to be running at least version ODAC 11.2 Release 5.

From the Library of zhanl mamykova

ptg999

 Skill 1.1: Connect to data sources CHAPTER 1 15

Connecting to a MySQL database
To connect to a MySQL database, select Get Data > MySQL Database. If it’s the first time you
are connecting to a MySQL database, you will likely need to install the latest data provider for
MySQL, called Connector/Net. After installing it, you should restart Power BI Desktop for the
update to take effect.

NOTE DOWNLOADING MYSQL DATA PROVIDER

You can download the latest Connector/Net data provider for MySQL from the official
MySQL website at https://dev.mysql.com/downloads/connector/net/.

Once you open the initial connection settings window, you will need to specify both the
server and database names. There is no option to choose DirectQuery when connecting to
MySQL, because the latter only supports the Import data connectivity mode. The advanced
options are the same as SQL Server’s name, sans the option to enable SQL Server Failover sup-
port.

After you click OK, you are taken to the credentials window. MySQL supports Windows au-
thentication, and you can either use the current user’s credentials or specify alternate ones. You
also have an option to use Database authentication mode. Clicking Connect might prompt a
note saying the connection will be unencrypted. If you click OK, you will be taken to the stan-
dard Navigator window. If you enabled full hierarchy navigation, the schemas would appear
with folder icons. With MySQL connections, you can choose tables, views, and scalar functions
to include in your data model. You can then proceed with loading the data, with an option of
applying transformations to it in Power Query Editor by clicking Edit.

Power BI supports connections to MySQL databases starting with MySQL 5.1; the data pro-
vider needs to be running version 6.6.5 at a minimum.

Connecting to PostgreSQL database
To connect to a PostgreSQL database, select Get Data > PostgreSQL Database. If you are
connecting to a PostgreSQL database for the first time, you might get an error message
prompting you to install “one or more additional components.”

NOTE DOWNLOADING POSTGRESQL DATA PROVIDER

You can download the latest Npgsql, the .NET data provider for PostgreSQL, from its official
GitHub repository at https://github.com/npgsql/Npgsql/releases.

When installing Npgsql, make sure to select Npgsql GAC Installation (Figure 1-7). Other-
wise, the data provider might not function correctly.

From the Library of zhanl mamykova

https://dev.mysql.com/downloads/connector/net/
https://github.com/npgsql/Npgsql/releases

ptg999

 16 CHAPTER 1 Consuming and transforming data by using Power BI Desktop

FIGURE 1-7 Npgsql setup features selection window.

Once you have the data provider installed correctly, you will need to restart Power BI,
and then you can start the connection setup. In the initial PostgreSQL database connection
window, you will need to specify both the server and database names. There is no option to
choose between Import and DirectQuery, as PostgreSQL currently does not support Direc-
tQuery. The advanced settings are the same as the ones for the MySQL connection: you can
specify a custom connection timeout in minutes and a native database query; you can also
elect to include the relationship columns and navigate using the full hierarchy.

Once you specify the connection settings, you will be prompted to enter connection cre-
dentials. For PostgreSQL connections, you can only use database credentials. After you enter
the credentials, you will see the standard Navigator window. If you chose to navigate using full
hierarchy, the database schemas will appear with folder icons. In PostgreSQL, you can only se-
lect tables and views to include in your data model. Once you choose the desired objects, you
can either load the data by clicking Load or transform it before loading by clicking Edit.

Power BI supports connections to PostgreSQL starting with PostgreSQL 7.4; the Npgsql.NET
provider needs to be at least version 2.0.12.

From the Library of zhanl mamykova

ptg999

 Skill 1.1: Connect to data sources CHAPTER 1 17

Connecting to data using generic interfaces
Apart from using built-in connectors that are specific to their data sources, Power BI allows you
to connect to other data sources with generic interfaces. These methods can also be useful in
cases where built-in connectors do not work properly. Currently, Power BI supports the follow-
ing generics interfaces:

 ■ ODBC

 ■ OLE DB

 ■ OData

 ■ REST APIs

 ■ R Scripts

For these connectors, you need to specify your own connection strings. You might also
need to install additional software for the connectors to work. For example, to run R scripts,
you need to install R locally on your machine. To connect to a PostgreSQL database through
ODBC, you will need to download the ODBC driver for PostgreSQL. The exact details on how to
connect to any data source are specific to each data source and are outside of the scope of this
book.

MORE INFO CONNECTING TO DATA WITH GENERIC INTERFACES IN POWER BI DESKTOP

By using generic interfaces Power BI, you can greatly increase the list of data sources to
which you can connect. For more details on working with generic interfaces, see “Connect
to data using generic interfaces in Power BI Desktop” at https://powerbi.microsoft.com/en-
us/documentation/powerbi-desktop-connect-using-generic-interfaces/.

Connecting to Text/CSV files
To connect to a Text or CSV file, select Get Data, Text/CSV. You will then need to select your
file in the standard Open window. Choosing the file and clicking Open takes you to the next
screen (Figure 1-8), where you see a preview of your data, along with the settings.

Power BI automatically determines the file encoding, delimiter type, and how many rows
should be used to detect the data types in the file. You can change these settings using the
drop-down options if need be.

From the Library of zhanl mamykova

https://powerbi.microsoft.com/en-us/documentation/powerbi-desktop-connect-using-generic-interfaces/
https://powerbi.microsoft.com/en-us/documentation/powerbi-desktop-connect-using-generic-interfaces/

ptg999

 18 CHAPTER 1 Consuming and transforming data by using Power BI Desktop

FIGURE 1-8 The Text/CSV file settings and data preview window

After you make sure the settings look correct to you, you can either click Load to load data
directly into Power BI, or you can click Edit and apply further transformations to data in Power
Query Editor.

Connecting to JSON files
To connect to a JSON file, you need to select Get Data > JSON. After selecting the file and
clicking Open, you will be taken directly to Power Query Editor. To extract the data from your
JSON file, you will likely need to perform various transformations, depending on the structure
of your file. Figure 1-9 shows an imported JSON file that contains two tables within. The tables
have different structures.

FIGURE 1-9 Power Query Editor after opening a JSON file

From the Library of zhanl mamykova

ptg999

 Skill 1.1: Connect to data sources CHAPTER 1 19

If you want to extract the data from your JSON file, you can either transform the starting list
to a table by clicking the Transform tab and selecting To Table in the Convert group, or you
can drill down into a specific record by clicking on a specific Record link. If you would like to
see a preview of data in a record, you can click on its cell without clicking on the link, which will
open a data preview pane at the bottom of Power Query Editor.

Clicking on the cog wheel next to the Source step in Query Settings opens a window where
you can specify advanced settings. Among other things, you can specify file encoding in the
File Origin drop-down list. Once you are done with transformations, you can click Close & Ap-
ply to load data into Power BI data model.

Connecting to XML files
To connect to an XML file, select Get Data > XML. Unlike JSON files, XML files have a structure
that can be parsed by Power BI Desktop. Once you select the file you want opened in the Open
window, you are taken to a Navigator window (Figure 1-10), where you see the structure of the
file.

FIGURE 1-10 Contents of a sample XML file

After selecting the items that you want to import to your data model, you can click Load,
which will load the data to Power BI cache as-is. Alternatively, you can click Edit, and it will
open the Power Query Editor window for you to apply transformations to your data. In Power
Query Editor, you can click on the cog wheel next to the Source step to open the advanced file

From the Library of zhanl mamykova

ptg999

 20 CHAPTER 1 Consuming and transforming data by using Power BI Desktop

settings, where you can specify file encoding if need be. Clicking the Home tab and selecting
Close & Apply in the Close group will load the data to the data model.

Connecting to a Folder
If you have several files that share the same structure, you can import them one by one, apply-
ing the same transformations, and then append them together in Power Query Editor. There is
one significant problem with this approach: it is time-consuming. There is a more efficient way:
instead of importing the files individually, you can connect to the folder that contains them.

To connect to a folder, select Get Data > Folder. You will be prompted to specify the folder
path, which you can do either by clicking Browse and navigating to the folder in the Browse
For Folder window, or you can paste the folder path. Once you click OK, a new window (Figure
1-11) opens where you see a list of files in the folder in binary format in the Content column,
along with their attributes. These attributes include:

 ■ Name

 ■ Extension

 ■ Date accessed

 ■ Date modified

 ■ Date created

 ■ Attributes

 ■ Folder Path

FIGURE 1-11 Folder preview window

At this stage, you have two options to continue: you can either select Combine & Edit or
just Edit. Clicking the latter brings you to Power Query Editor with the starting point that is the
same as the data preview.

From the Library of zhanl mamykova

ptg999

 Skill 1.1: Connect to data sources CHAPTER 1 21

If you click Combine & Edit, however, the Combine Files window opens, where you can
specify settings under which files should be combined.

The first thing you can choose is an example file. By default, the first file is the example file.
Alternatively, you can choose a specific file. The implication of choosing a certain file is that the
query might break if this file is later renamed, moved, or deleted.

The other settings that you can specify depend upon the type of the files you are combin-
ing. For Text/CSV files, for example, you can choose the same options as for an individual CSV
file—file origin (encoding), delimiter type, and the number of rows used for data type detec-
tion. You also have an option to skip files with errors. For Excel files, a Navigator window opens,
where you can choose one object to consolidate from each file. The selected object needs to
be of the same name and type across files.

After specifying the relevant settings, clicking OK creates several objects in Power Query
Editor, which you can see in the Queries pane in Power Query Editor (Figure 1-12).

FIGURE 1-12 Objects created after combining files

Based on the sample file, Power BI decides which transformations should be applied to each
file. For example, if you are combining text files with headers, then the latter should be used
as column names. The transformations are combined into a custom function, which is then ap-
plied to each file from the folder to which you are connecting. Auxiliary objects, the parameter,
and the binary files are created as well.

If you add or remove files in the folder later, you can click Refresh, and all the data will be
reloaded without any manual intervention. For the folder connector to work correctly, how-
ever, it is very important that all of the files share the same structure.

From the Library of zhanl mamykova

ptg999

 22 CHAPTER 1 Consuming and transforming data by using Power BI Desktop

NOTE COMBINING BINARIES IN POWER BI DESKTOP

With the Folder data source, you are not limited to combining CSV or text files; you can also
combine Excel, JSON, and other types of files. For more details on the functionality, see
“Combine binaries in Power BI Desktop” at https://powerbi.microsoft.com/en-us/documen-
tation/powerbi-desktop-combine-binaries/.

Connecting to a SharePoint folder
The process of connecting to a folder in SharePoint is similar to connecting to a local folder,
except for the initial connection window. Once you click Get Data > SharePoint Folder, you
need to specify site URL, which is the root SharePoint site URL path, excluding any subfolders.

After you click OK, you are then taken to the credentials window. You have three options to
choose from: Anonymous, Windows, and Microsoft Account. As usual, if you choose to use
Windows credentials, you can either use the current user’s credentials or alternate credentials.
Choosing Microsoft Account prompts you to sign into your account in the window.

The experience that follows the credentials window is identical to the process of connecting
to a local folder.

Connecting to web pages and files
With Power BI Desktop, you can get data from web pages. To review the functionality, you
can connect to a Wikipedia article called “List of states and territories of the United States” at
https://en.wikipedia.org/wiki/List_of_states_and_territories_of_the_United_States. Note that be-
cause Wikipedia’s nature, the information on the page might change without notice, and what
you see may differ slightly from figures in this chapter. But the overall process will be the same.

Let’s start by clicking Get Data > Web. The only required parameter is a URL. The advanced
options allow you to compose a URL from parts, specify a custom timeout period in minutes,
as well as add one or more HTTP request header parameters. When you connect to a web page
for the first time, you can select from five authentication methods:

 ■ Anonymous

 ■ Windows

 ■ Basic

 ■ Web API

 ■ Organizational account

Because Wikipedia is a publicly available website, you can choose Anonymous. After click-
ing Connect, you are taken to the Navigator window. The window is split into two parts as
usual: a list of objects on the left and data preview on the right. In the list of objects, the first

From the Library of zhanl mamykova

https://powerbi.microsoft.com/en-us/documentation/powerbi-desktop-combine-binaries/
https://powerbi.microsoft.com/en-us/documentation/powerbi-desktop-combine-binaries/
https://en.wikipedia.org/wiki/List_of_states_and_territories_of_the_United_States

ptg999

 Skill 1.1: Connect to data sources CHAPTER 1 23

object is Document; the rest are tables that Power BI found on the page. Handling web page
objects that are not tables is less straightforward: for this, you need to navigate through HTML
tags, and this is outside of scope of this book.

MORE INFO WEB SCRAPING IN POWER BI

For information on how you can navigate through HTML tags with Power Query, see the
article by Gil Raviv, “Web Scraping in Power BI and Excel Power Query” at https://datachant.
com/2017/03/30/web-scraping-power-bi-excel-power-query/. The data preview has two
tabs: Table View and Web View. When you select an object on the left, you can see the way
it will appear in the Power Query Editor once you click Edit; if you switch to Web View, you
will see the object the way it appears on the web. You can also select tables by ticking check
boxes in Web View. You can see the Navigator window in Figure 1-13.

FIGURE 1-13 Navigator window when connecting to a web page

If one or more cells in a table are merged, the content is repeated for every cell once you
bring the data to Power Query Editor. After selecting one or more objects, you can load the
data directly to the data model, or edit it and then load.

The same connector, Web, can also be used to connect to files, such as Excel, text, JSON,
XML, and others located on the Internet by specifying a URL.

From the Library of zhanl mamykova

https://datachant.com/2017/03/30/web-scraping-power-bi-excel-power-query/
https://datachant.com/2017/03/30/web-scraping-power-bi-excel-power-query/

ptg999

 24 CHAPTER 1 Consuming and transforming data by using Power BI Desktop

NOTE CONNECTING TO FILES IN ONEDRIVE FOR BUSINESS

It is possible to connect to files from OneDrive for Business, and you can use either an
individual or group account for this. To connect to a file from OneDrive, you will need its
link, which you can generate in OneDrive. You will then need to click Get Data > Web, and
paste the link. Note that you need to remove the “?web=1” porting of the URL so that Power
BI can access your file directly. For more details on how to use OneDrive as a data source,
including scheduling refresh, see “Use OneDrive for Business links in Power BI Desktop” at
https://powerbi.microsoft.com/en-us/documentation/powerbi-desktop-use-onedrive-busi-
ness-links/.

Connecting to Azure Data Lake Store and Azure Blob
Storage
You can also connect to a folder located in Azure Data Lake Store, but the process is slightly
different compared to a local folder and SharePoint folder.

Once you click Get Data > Azure Data Lake Store, you will need to specify the folder path
starting with ad://. Note that the path does not need to be the root path; it can be a specific
folder as well as a file.

With Azure Data Lake Store, the only authentication option is an organizational account. Af-
ter you specify the credentials, a folder preview opens, but there is no Combine & Edit button;
the only options are OK and Cancel. Clicking OK is the same as clicking Edit; doing so takes
you to the Power Query Editor. You can still combine your files automatically, leveraging the
same mechanism that works for local and SharePoint folders. To do this, you need to click the
double arrow next to the Content column, which is the left-most column (Figure 1-14).

FIGURE 1-14 Combine Files button

Clicking the Combine Files button opens the Combine Files window with settings relevant
to the type of the files. Clicking OK creates the following auxiliary objects to combine files: a
parameter, a binary file reference, a processed sample file, a custom function, and the final
combining query.

The process of connecting to Azure Blob Storage is identical to an Azure Data Lake Store
connection, except you need to select Get Data > Azure Blob Storage first, and then specify
account name or URL. Even if your containers have folders inside, the structure will be flattened
so you can see all the files inside your containers.

From the Library of zhanl mamykova

https://powerbi.microsoft.com/en-us/documentation/powerbi-desktop-use-onedrive-business-links/
https://powerbi.microsoft.com/en-us/documentation/powerbi-desktop-use-onedrive-business-links/

ptg999

 Import from Excel CHAPTER 1 25

Import from Excel

Power BI can work with Excel files in two distinct ways:

 ■ Import data

 ■ Import workbook contents

Importing data only gives you the raw data from Excel while importing workbook contents
imports Power Query queries, Power Pivot data model, and Power View worksheets.

Import data from Excel
To connect to an Excel file, select Get Data > Excel. In the following Open dialog window,
navigate to your file and click Open.

Power BI then opens the Navigator window (Figure 1-15), which presents Excel sheets,
tables, and named ranges in the left pane. Every item type has its own icon. If you select an
item in the left pane, a preview of its data will appear on the right.

FIGURE 1-15 Navigator window when connecting to Excel

Once you select items to import, you can either load them into the data model right away
by clicking Load, or you can edit them before loading by clicking Edit. The latter option opens
Power Query Editor, where you can apply transformation to your data. To load the data after
editing it, click Close & Apply in the Power Query Editor window.

From the Library of zhanl mamykova

ptg999

 26 CHAPTER 1 Consuming and transforming data by using Power BI Desktop

Import Excel workbook contents
To import Excel workbook contents, select File > Import > Excel Workbook Contents. Select
your file in the Open dialog window that follows.

You will then see a message stating that a new Power BI Desktop file will be made for you,
which will retain as much useful content as possible. This means that Power BI Desktop imports
Power Query queries, Power Pivot data models, and Power View worksheets as long as it sup-
ports the elements inside them. You can then click Start to import the workbook contents. You
will then see the Import Excel workbook contents window (Figure 1-16).

FIGURE 1-16 Import Excel workbook contents status window

If your queries contain links to the data from Excel sheets in the same workbook (obtained
by clicking Data > from Table or Excel.CurrentWorkbook M Function, you will have a choice
of either copying the data or keeping the connection to the Excel file.

Copying the data creates a copy of it in the query in the form of a compressed JSON docu-
ment. You can edit it later the Power Query Editor by clicking the cog wheel next to the Source
step in the Query Settings pane on the right.

The option Keep Connection, instead of copying the data, keeps the dependency on the
Excel file, meaning the file is referenced with a full file path.

From the Library of zhanl mamykova

ptg999

 Connect to SQL Azure, Big Data, SQL Server Analysis Services (SSAS) CHAPTER 1 27

IMPORTANT IMPORTING POWER VIEW SHEETS

Not all visuals from Power View can be imported in Power BI because some Power View
visuals have no corresponding visuals in Power BI. For example, in Power View, you use hori-
zontal or vertical multiples in a pie chart. In Power BI, there is no such option. When such
a visual is imported to Power BI, you will get a placeholder visual with the following error
message: “This visual type is not yet supported.” You will receive this error message for each
unsupported visual imported from an Excel file.

NOTE IMPORTING EXCEL WORKBOOK CONTENTS

The best way to migrate a Power Pivot data model to Power BI is by importing Excel work-
book contents. For more details on the process, see “Import Excel workbooks into Power BI
Desktop” at https://powerbi.microsoft.com/en-us/documentation/powerbi-desktop-import-
excel-workbooks/.

Connect to SQL Azure, Big Data, SQL Server Analysis
Services (SSAS)

In some cases, importing data into Power BI may not be a viable option due to its volume,
change frequency, or other reasons. In these cases, you can connect to data sources that al-
ready have data models in them that can be easily consumed in Power BI in either DirectQuery
or Live Connection mode.

Connecting to Azure SQL Database and Azure SQL Data
Warehouse
Both Azure SQL database and Azure SQL Data Warehouse have their own connection options
in the Get Data window. The data connection experience, however, is identical to that of SQL
Server. Furthermore, the same two functions are used to connect to all three data sources: Sql.
Database in case you connect to a specific database or Sql.Databases if you do not specify a
database name.

To connect, you need to specify a fully qualified name of your server, which you can find in
Azure Portal. Usually, it is in the following format <name>.database.windows.net.

The only limitation to be aware of is even though you are given an option of authenticating
using Windows credentials, neither Azure SQL Database nor Azure SQL Data Warehouse cur-
rently support this option, leaving only Database Authentication Mode available.

Additionally, you should make sure that firewall rules for the database you are connecting
to are configured properly.

From the Library of zhanl mamykova

https://powerbi.microsoft.com/en-us/documentation/powerbi-desktop-import-excel-workbooks/
https://powerbi.microsoft.com/en-us/documentation/powerbi-desktop-import-excel-workbooks/

ptg999

 28 CHAPTER 1 Consuming and transforming data by using Power BI Desktop

NOTE CONFIGURING AZURE SQL DATABASE FIREWALL RULES

Information on how to configure firewall rules for Azure SQL Database can be found on the
Microsoft Docs website at https://docs.microsoft.com/en-us/azure/sql-database/sql-data-
base-firewall-configure.

Connecting to Azure HDInsight Spark
To connect to Azure HDInsight Spark, click Get Data > Azure > Azure HDInsight Spark
(Beta) and click Connect. Because this is a preview connector, you will get a warning mes-
sage saying that it might not work in the same way in the final version, and future changes may
cause your queries to become incompatible.

After clicking Continue, you will be prompted to enter the server name. You can get the
server name from Azure Portal, and usually, it is in the following format: https://<name>.azur-
ehdinsight.net. The only other choice you will need to make is between Import and Direct-
Query connectivity modes.

Clicking OK takes you to credentials window, with the only authentication option being
username and password. Once you specify the credentials, you will be taken to a standard
Navigator window, where you see the tables in your Spark server and a data preview pane.

Connecting to SQL Server Analysis Services (SSAS)
Power BI Desktop supports two data connectivity modes with SQL Server Analysis Services
(SSAS): Import and Live Connection. As explained above, Live Connection is a special case of
DirectQuery. To connect to SSAS from Power BI Desktop, click Get Data > SQL Server Analy-
sis Services Database > Connect.

You will then see the initial connection settings window, where you need to specify the
server name. Optionally, you can also enter a port number with a colon following the server
name—for example, localhost:1234. You can specify a database name, or you can select it
later. By default, Connect Live is selected instead of Import. If you select Import, you will
have an option to write a custom MDX or DAX query. Clicking OK takes you to the authentica-
tion window, where you have three options: Windows, Basic, and Microsoft Account. After
you specify your credentials, you are taken to the Navigator window.

If you select Connect Live, you are prompted to choose a model or perspective from your
database. Clicking OK would create a live connection to the database.

If you selected Import in the initial connection settings, the Navigator window (Figure 1-17)
lets you build a table using attributes and measures from a model that you select. If you have
more than one model in your database, you will only be able to use one at a time. Once you
are finished building a table, you can either load the data right away by clicking Load or apply
further transformations to it in Power Query Editor by clicking Edit.

From the Library of zhanl mamykova

https://docs.microsoft.com/en-us/azure/sql-database/sql-data-base-firewall-configure
https://docs.microsoft.com/en-us/azure/sql-database/sql-data-base-firewall-configure

ptg999

 Connect to SQL Azure, Big Data, SQL Server Analysis Services (SSAS) CHAPTER 1 29

FIGURE 1-17 Navigator window after selecting Import

While Import behaves the same way with SSAS as with other data sources, Live Connection
is different. The first notable difference is that there are no Data and Relationships buttons in
the main Power BI Desktop window on the left; you can only use the Report view. It is not pos-
sible to view the underlying data or modify it in any way. However, if you are using a Tabular
model, you can create report-level measures and Quick Measures in your report. These mea-
sures would not be added to the data source. Instead, they will be kept in the report only.

NOTE POWER BI DESKTOP AND ANALYSIS SERVICES

While Power BI supports almost all the features of Analysis Services Tabular, not all Multidi-
mensional features are currently supported, such as Actions and Named Sets. Furthermore,
working with SSAS Multidimensional requires at least SQL Server 2012 SP1 CU4 for the con-
nector to work properly. For more details on working with SSAS Tabular, see “Using Analysis
Services Tabular data in Power BI Desktop” at https://powerbi.microsoft.com/en-us/docu-
mentation/powerbi-desktop-analysis-services-tabular-data/. For an overview of capabilities
and features of Power BI and SSAS MD connections, see “Connect to SSAS Multidimensional
Models in Power BI Desktop” at https://powerbi.microsoft.com/en-us/documentation/pow-
erbi-desktop-ssas-multidimensional/.

Connecting to Power BI service
Power BI Desktop allows you to connect to datasets published to a Power BI service. To create
a connection, select Get Data> Power BI service. At this stage, you need to sign in to your
Power BI account, unless you have already done so. Signing in opens a window with the work-
spaces you have access to, and datasets inside them. You can see the Power BI service window
in Figure 1-18.

From the Library of zhanl mamykova

https://powerbi.microsoft.com/en-us/documentation/powerbi-desktop-analysis-services-tabular-data/
https://powerbi.microsoft.com/en-us/documentation/powerbi-desktop-analysis-services-tabular-data/
https://powerbi.microsoft.com/en-us/documentation/powerbi-desktop-ssas-multidimensional/
https://powerbi.microsoft.com/en-us/documentation/powerbi-desktop-ssas-multidimensional/

ptg999

 30 CHAPTER 1 Consuming and transforming data by using Power BI Desktop

FIGURE 1-18 Power BI service window

Clicking Load creates a connection, and it behaves like an SSAS Tabular Live Connection.

MORE INFO CONNECT TO DATA SOURCES IN POWER BI DESKTOP

For a video overview on how to connect to data sources in Power BI Desktop, see the “Con-
nect to Data Sources in Power BI Desktop” page on Power BI Guided Learning at https://
powerbi.microsoft.com/en-us/guided-learning/powerbi-learning-1-2-connect-to-data-sourc-
es-in-power-bi-desktop/.

From the Library of zhanl mamykova

https://powerbi.microsoft.com/en-us/guided-learning/powerbi-learning-1-2-connect-to-data-sourc-es-in-power-bi-desktop/
https://powerbi.microsoft.com/en-us/guided-learning/powerbi-learning-1-2-connect-to-data-sourc-es-in-power-bi-desktop/
https://powerbi.microsoft.com/en-us/guided-learning/powerbi-learning-1-2-connect-to-data-sourc-es-in-power-bi-desktop/

ptg999

 Skill 1.2: Perform transformations CHAPTER 1 31

MORE INFO CONNECTING TO SAP BW AND SAP HANA

The exam does not test your knowledge of Power BI behavior when connecting to SAP Busi-
ness Warehouse (BW) and SAP HANA, though you should be aware of the significant differ-
ences compared to regular relational databases. Both data sources support DirectQuery, but
in the case of SAP BW, the experience is closer to Live Connection than DirectQuery because
Power Query Editor is not available. With SAP HANA, you can edit your queries in Power
Query Editor. For more information, you can review the following articles:

 ■ “Use the SAP BW Connector in Power BI Desktop” at https://powerbi.microsoft.com/
en-us/documentation/powerbi-desktop-sap-bw-connector/.

 ■ “DirectQuery and SAP Business Warehouse (BW)” at https://powerbi.microsoft.com/
en-us/documentation/powerbi-desktop-directquery-sap-bw/.

 ■ “Use SAP HANA in Power BI Desktop” at https://powerbi.microsoft.com/en-us/docu-
mentation/powerbi-desktop-sap-hana/.

 ■ “DirectQuery and SAP HANA” at https://powerbi.microsoft.com/en-us/documentation/
powerbi-desktop-directquery-sap-hana/.

Skill 1.2: Perform transformations

Often, once you have created connections, you will need to apply transformations to your data
unless you are using a data model that is ready to be used in Power BI Desktop.

Power BI Desktop has a very powerful ETL (extract, transform, load) tool in it: Power Query.
Power Query is virtually the same engine that first appeared as an Excel add-in for Excel 2010
and Excel 2013, and it is part of Excel 2016 (Get & Transform Data). This engine is also part of
SQL Server Analysis Services 2017, Azure Analysis Services, and Common Data Service.

When you connected to various data sources and worked inside Power Query Editor earlier
in this chapter, you have already been using Power Query. Besides connecting to data, Power
Query can perform sophisticated transformations to it. In this book, Power Query refers to the
engine behind Power Query Editor.

Power Query uses a programming language called M, which is short for “mashup.” It is a
functional case-sensitive language. The latter point is worth bringing attention to because
unlike the other language of Power BI we are going to cover later (DAX), M is case-sensitive. In
addition to that, it is a completely new language that, in contrast with DAX, does not resemble
Excel formula language in any way.

This section covers how to:
 ■ Design and implement basic and advanced transformations

 ■ Apply business rules

 ■ Change data format to support visualization

From the Library of zhanl mamykova

https://powerbi.microsoft.com/en-us/documentation/powerbi-desktop-sap-bw-connector/
https://powerbi.microsoft.com/en-us/documentation/powerbi-desktop-sap-bw-connector/
https://powerbi.microsoft.com/en-us/documentation/powerbi-desktop-directquery-sap-bw/
https://powerbi.microsoft.com/en-us/documentation/powerbi-desktop-directquery-sap-bw/
https://powerbi.microsoft.com/en-us/docu-mentation/powerbi-desktop-sap-hana/
https://powerbi.microsoft.com/en-us/docu-mentation/powerbi-desktop-sap-hana/
https://powerbi.microsoft.com/en-us/documentation/powerbi-desktop-directquery-sap-hana/
https://powerbi.microsoft.com/en-us/documentation/powerbi-desktop-directquery-sap-hana/

ptg999

 32 CHAPTER 1 Consuming and transforming data by using Power BI Desktop

Design and implement basic and advanced transformations
Data does not always come in perfect shapes and forms. It is nearly impossible to create a da-
taset that would be perfect for every analysis because that would create many variations of the
same data in one source. Therefore, it is imperative to be able to shape the data in the format
that would be the best for your goals.

Power Query overview
We can start by having a closer look at Power Query Editor (Figure 1-19). You can open it from
the main Power BI Desktop window by clicking the Home tab and selecting Edit Queries in
the External Data group. Let’s assume you have connected to Wide World Importers database
in Import mode, but you have not loaded any data yet. When connecting, add a check mark to
Fact Sale in the list of objects and then click Select Related Tables; click Edit to continue.

NOTE DOWNLOADING WIDE WORLD IMPORTERS DATABASE

You can download the WideWorldImportersDW database backup for SQL Server from
GitHub at https://github.com/Microsoft/sql-server-samples/releases/tag/wide-world-
importers-v1.0. Installation instructions can be found on Microsoft Docs website at https://
docs.microsoft.com/en-us/sql/sample/world-wide-importers/installation-and-configuration-
wwi-oltp.

FIGURE 1-19 The Power Query Editor window

From the Library of zhanl mamykova

https://github.com/Microsoft/sql-server-samples/releases/tag/wide-world-importers-v1.0
https://github.com/Microsoft/sql-server-samples/releases/tag/wide-world-importers-v1.0
https://docs.microsoft.com/en-us/sql/sample/world-wide-importers/installation-and-configuration-wwi-oltp
https://docs.microsoft.com/en-us/sql/sample/world-wide-importers/installation-and-configuration-wwi-oltp
https://docs.microsoft.com/en-us/sql/sample/world-wide-importers/installation-and-configuration-wwi-oltp

ptg999

 Skill 1.2: Perform transformations CHAPTER 1 33

Power Query Editor can be divided into five parts, each marked in the figure above:

1. Ribbon

2. Queries pane

3. Formula Bar

4. Data preview

5. Query Settings pane

If you have not yet customized your Power BI settings, you might not see the Formula Bar
that is visible in Figure 1-19. Because it is very useful when authoring intermediate-to-complex
queries, it is advisable to turn it on. To do that, select the View tab, and in the Layout group,
select Formula Bar. Formula Bar can be expanded by clicking on the arrow in its right part. If
you accidentally close the Query Settings pane, you can turn it back on in the View tab as well.
Other useful buttons in the View tab include Go to Column > Advanced Editor, and Query
Dependencies.

Go to Column allows you to select a column from a list of all columns in a table. Once you
click the button, a window with a list of all columns opens. Inside, columns are sorted by their
natural order (for example, in the order they currently appear in the query). There is an option
to sort the list alphabetically, as well as do a search. This can be useful when there are many
columns, and you are struggling to locate the column you are trying to find.

In the data preview pane, you can see icons to the left of column names; they signify data
types. Figure 1-20 shows a list of data types supported in Power Query, along with their icons.

FIGURE 1-20 List of data types supported by Power Query

The last item in the list, Using Locale, is not a data type but an option to select a data type
considering the locale. For example, 1/4/2018 means 1 April 2018 in Australia, but it means
January 4, 2018 in the USA. With Power Query, you can differentiate between the two. If you
see ABC123 displayed, it means that there is no data type set for the column.

From the Library of zhanl mamykova

ptg999

 34 CHAPTER 1 Consuming and transforming data by using Power BI Desktop

IMPORTANT POWER QUERY EDITOR AND DATA MODEL DATA TYPES

Several data types only exist in Power Query Editor but not once you load the data. For
instance, Percentage and Duration values are converted into Decimal Number and Date/
Time/Time zone values are converted into Date/Time ones. Currently, Binary columns are
not loaded.

As mentioned above, Power Query records all the transformations steps, and you can see
them in the Applied Steps area on the right. The last step provides the output for a query.
When you click on a step, you can see the code behind it in Formula Bar. In Advanced Editor,
you can see all steps at once, and you can edit the code as well. Currently, Advanced Editor only
has one feature: it checks for some obvious syntax errors. There is no IntelliSense yet, so if you
are coding in Advanced Editor, you are on your own.

NOTE DATA PREVIEW RECENTNESS

To make query editing experience more fluid, Power Query caches data previews. Therefore,
if your data changes often, you may not see the latest data in Power Query Editor. To refresh
a preview, you can select Home > Refresh Preview. To refresh previews of all queries, you
should select Home > Refresh Preview > Refresh All.

In the Query Dependencies view, you can see all of your data sources and queries tied to-
gether when there is a connection between them. In our example, there is one data source: the
WideWorldImportersDW database, which has a database icon next to it. From this data source
stems six arrows—one to each query, which, in our case, are tables. You can see the Query
Dependencies view in Figure 1-21.

FIGURE 1-21 Query Dependencies view

From the Library of zhanl mamykova

ptg999

 Skill 1.2: Perform transformations CHAPTER 1 35

In the Home, Transform, and Add Column tabs we see buttons that transform data, and
we are going to look at some of them in detail.

MORE INFO THE POWER QUERY EDITOR

For a more detailed description of the Power Query Editor interface, including illustrations
for each area, see “Query overview in Power BI Desktop” at https://powerbi.microsoft.com/
en-us/documentation/powerbi-desktop-query-overview/.

Using the Power Query Editor interface
If you followed the example outlined above, you need to take an additional step to make your
screen match Figure 1-19. Note that in the Fact Sale query, there is a step called Removed Col-
umns. In it, unnecessary columns are excluded. Power Query does not modify any underlying
data by default, so if you remove a column in a query, it only removes it from this query and
keeps it in the data source.

If you right-click on the left-most column, Sale Key, and select Remove, you will remove
this column from the query. At this stage, a new step—Removed Columns—would be added
to your query. If you look at Formula bar, it will have the following code:

= Table.RemoveColumns(Fact_Sale,{"Sale Key"})

This code is written in M. At this stage, we are not going to modify the code, but it is still
useful to see that the step consists of a function that takes two arguments: a table and a list of
columns to remove. Curly braces denote a list in M.

You can now remove some more columns that you don’t need. Hold the Ctrl key and select
the following columns:

 ■ Description

 ■ Package

 ■ Total Dry Items

 ■ Total Chiller Items

 ■ Lineage Key

 ■ Dimension.City

 ■ Dimension.Customer(Bill To Customer Key)

 ■ Dimension.Customer(Customer Key)

 ■ Dimension.Date(Delivery Date Key)

 ■ Dimension.Date(Invoice Date Key)

 ■ Dimension.Employee

 ■ Dimension.Stock Item

From the Library of zhanl mamykova

https://powerbi.microsoft.com/en-us/documentation/powerbi-desktop-query-overview/
https://powerbi.microsoft.com/en-us/documentation/powerbi-desktop-query-overview/

ptg999

 36 CHAPTER 1 Consuming and transforming data by using Power BI Desktop

Right-click any of them and select Remove. Note that there is no extra step generated, and
the code in Formula Bar is updated to include more columns:

= Table.RemoveColumns(Fact_Sale,{"Sale Key", "Description", "Package", "Total Dry
Items", "Total Chiller Items", "Lineage Key", "Dimension.City", "Dimension.Customer(Bill
To Customer Key)", "Dimension.Customer(Customer Key)", "Dimension.Date(Delivery Date
 Key)", "Dimension.Date(Invoice Date Key)", "Dimension.Employee", "Dimension.Stock
 Item"})

Note also how we had to remove the following columns only because we did not uncheck
the Include Relationship Columns option in advanced settings when we first connected to
the database:

 ■ Dimension.City

 ■ Dimension.Customer(Bill To Customer Key)

 ■ Dimension.Customer(Customer Key)

 ■ Dimension.Date(Delivery Date Key)

 ■ Dimension.Date(Invoice Date Key)

 ■ Dimension.Employee

 ■ Dimension.Stock Item

If you click the cog next to the Source step, you can change the setting.

IMPORTANT UNCHECKING INCLUDE RELATIONSHIP COLUMNS

Be aware that if you uncheck the Include Relationship Columns option, the Select Related
Tables function in the Navigator window will not work correctly. If you exclude the relation-
ship columns, you must pick the following tables manually:

 ■ Fact Sale

 ■ Dimension.City

 ■ Dimension.Customer

 ■ Dimension.Date

 ■ Dimension.Employee

 ■ Dimension.Stock Item

You can safely leave the option enabled because the relationship columns are not loaded
into data model; they are only shown in Power Query Editor.

Once you uncheck Include Relationship Columns and click OK, you can see an error mes-
sage in place of the Removed Columns step. This error message is shown in Figure 1-22.

From the Library of zhanl mamykova

ptg999

 Skill 1.2: Perform transformations CHAPTER 1 37

FIGURE 1-22 Error message after we excluded relationship columns

You received this error because you had previously removed several columns, but now that
these columns are excluded, the code is trying to remove columns that no longer exist. This
error can be fixed in two ways. First, change the settings back and include the relationship col-
umns. Second, remove the last step applied to Fact Sale and remove the unnecessary columns
again, but this time without relationship columns.

To remove a step, you can click on the cross icon to the left of its name. In order to remove
all steps starting with a certain one, you can right-click on the step and select Delete Until
End. In our case, it does not matter which option we choose because the Removed Columns
step is the last one anyway, which means you can select Delete.

Now that you’ve canceled the last step, remove the extra columns again by selecting only
the ones that you need. To do that, click Home > Manage Columns > Choose Columns.
Note that when you click on the text part of the button, you have an option to select Go to
Column, which is the same button as in the View tab. In some cases, the same button appears
in different ribbons.

Once you click Choose Columns, a window with a list of columns appears, and it is identical
to the Go to Column window, except you can choose multiple columns at once. Uncheck the
following columns, keeping the others selected:

 ■ Sale Key

 ■ Description

 ■ Package

 ■ Total Dry Items

 ■ Total Chiller Items

 ■ Lineage Key

Power Query has now created a step called Removed Other Columns. If you look at For-
mula Bar now, you will see the following code:

= Table.SelectColumns(Fact_Sale,{"City Key", "Customer Key", "Bill To Customer Key",
 "Stock Item Key", "Invoice Date Key", "Delivery Date Key", "Salesperson Key", "WWI
 Invoice ID", "Quantity", "Unit Price", "Tax Rate", "Total Excluding Tax", "Tax Amount",
 "Profit", "Total Including Tax"})

From the Library of zhanl mamykova

ptg999

 38 CHAPTER 1 Consuming and transforming data by using Power BI Desktop

Note that Power Query now uses the Table.SelectColumns function, which, like
Table.RemoveColumns, takes two arguments: a table, and a list of columns to keep, instead
of columns to remove. Even though the approach is different, the result is the same. You
should now have a table with the following columns:

 ■ City Key

 ■ Customer Key

 ■ Bill To Customer Key

 ■ Stock Item Key

 ■ Invoice Date Key

 ■ Delivery Date Key

 ■ Salesperson Key

 ■ WWI Invoice ID

 ■ Quantity

 ■ Unit Price

 ■ Tax Rate

 ■ Total Excluding Tax

 ■ Tax Amount

 ■ Profit

 ■ Total Including Tax

This is a good example that shows that in many cases, there is more than one way to achieve
the same goal in Power BI.

Steps in the Applied Steps area of Query Settings can be renamed, which may be useful for
code documentation purposes. To do that, you can either select the step you want to rename
and hit F2, or you can right-click the step and select Rename. In our case, we can keep the
names of all steps as-is.

Double-clicking on a step is the same as clicking on the cog wheel next to it; doing so opens
step settings, which some, but not all, steps have. Step settings can also be edited by selecting
Edit Settings after right-clicking on a step.

If you would like to insert a new step to write your own code, you can do it in two ways.
First, you can right-click on a step and select Insert Step After. This will insert a step after the
currently selected step, and the new step will reference the currently selected one. Second, you
can click on the Fx button in Formula bar, which produces the same result.

Steps can be moved up and down either by dragging them or by right-clicking on a step
and selecting either Move Up or Move Down. Note that in some cases your query might
break if you assemble your steps in an incorrect order. For example, if you right-click on the

From the Library of zhanl mamykova

ptg999

 Skill 1.2: Perform transformations CHAPTER 1 39

Removed Other Columns step and select Move Up, you will get an error indicating the
column City Key was not found, and you will see a fourth step added: Fact_Sale. This behavior
is explained by the fact that system steps—such as opening a specific database after a connec-
tion to a server was made and then locating a specific table—are grouped into a special step
called Navigation. If you move the Removed Other Columns step back down, you will again
see only three steps. If you now click Home, Query, Advanced Editor, you will see four steps
instead. You can see the full Fact Sale query in Listing 1-1.

LISTING 1-1 Full code of the Fact Sale query

let
 Source = Sql.Databases("localhost", [CreateNavigationProperties=false]),
 WideWorldImportersDW = Source{[Name="WideWorldImportersDW"]}[Data],
 Fact_Sale = WideWorldImportersDW{[Schema="Fact",Item="Sale"]}[Data],
 #"Removed Other Columns" = Table.SelectColumns(Fact_Sale,{"City Key", "Customer
Key", "Bill To Customer Key", "Stock Item Key", "Invoice Date Key", "Delivery Date Key",
 "Salesperson Key", "WWI Invoice ID", "Quantity", "Unit Price", "Tax Rate", "Total
 Excluding Tax", "Tax Amount", "Profit", "Total Including Tax"})
in
 #"Removed Other Columns"

In the first step, Source, we connect to a server; in the second step, WideWorldImporters-
DW, we open the WideWorldImportersDW database; in the third step, Fact_Sale, we open the
Fact Sale table. Finally, in the fourth step, #”Removed Other Columns,” we remove unnecessary
columns. Note that the name of the last step, Removed Other Columns, contains spaces, and
because of this it must be put into double quotation marks and prefixed with a number sign.

You can now see that when you moved the Removed Other Columns step up, you placed
it after we opened the WideWorldImportersDW database before we opened the Fact Sale
table. This resulted in an error because the columns we were trying to remove could not be
located. This example shows that it is important to be careful when you are moving your steps
in a query. When you move, add, or delete steps, Power Query only handles the basic depen-
dencies: it updates step references, but it does not make sure that a query will work.

Queries can be split into parts using the Extract Previous in the right-click menu. If you
right-click on the Removed Other Columns step and select Extract Previous, you will be
prompted to enter the new query name. You can type any name you like. In this example, we
are going to name the new query SaleInitial. Once you type the name and click OK, a new
query with this name is created. This query contains all the steps before the Removed Other
Columns step. In the Fact Sale query, these steps are replaced with the reference to the Sale-
Initial query. Both queries can be seen in Listing 1-2.

From the Library of zhanl mamykova

ptg999

 40 CHAPTER 1 Consuming and transforming data by using Power BI Desktop

LISTING 1-2 SaleInitial and Fact Sale queries
// SaleInitial

let
 Source = Sql.Databases("localhost", [CreateNavigationProperties=false]),
 WideWorldImportersDW = Source{[Name="WideWorldImportersDW"]}[Data],
 Fact_Sale = WideWorldImportersDW{[Schema="Fact",Item="Sale"]}[Data]
in
 Fact_Sale

// Fact Sale

let
 Source = SaleInitial,
 #"Removed Other Columns" = Table.SelectColumns(Source,{"City Key", "Customer Key",
 "Bill To Customer Key", "Stock Item Key", "Invoice Date Key", "Delivery Date Key",
 "Salesperson Key", "WWI Invoice ID", "Quantity", "Unit Price", "Tax Rate", "Total
 Excluding Tax", "Tax Amount", "Profit", "Total Including Tax"})
in
 #"Removed Other Columns"

This feature can be useful when you want to separate complex queries into smaller parts for
easier maintenance or to reuse a query part.

Some queries support what is called Query Folding. Power Query will try to translate its
transformations into the data source’s native language where possible. You can see whether
Query Folding takes place by right-clicking on a step and selecting View Native Query. If the
step cannot be selected, it means that Query Folding does not take place. If you click on the
Removed Other Columns step in the Fact Sale step, you will be able to view the native query
(Listing 1-3).

LISTING 1-3 Native query of the Removed Other Columns step

select [City Key],
 [Customer Key],
 [Bill To Customer Key],
 [Stock Item Key],
 [Invoice Date Key],
 [Delivery Date Key],
 [Salesperson Key],
 [WWI Invoice ID],
 [Quantity],
 [Unit Price],
 [Tax Rate],
 [Total Excluding Tax],
 [Tax Amount],
 [Profit],
 [Total Including Tax]
from [Fact].[Sale] as [$Table]

Because we are connected to a SQL Server database, Power Query translated its transfor-
mations into SQL. You can notice that instead of importing all the columns and then deleting
the unnecessary ones, Power Query is importing only the desired columns.

From the Library of zhanl mamykova

ptg999

 Skill 1.2: Perform transformations CHAPTER 1 41

MORE INFO QUERY FOLDING

Query Folding is supported not only by relational databases but by some other data sources
as well. For performance reasons, it is best to place the transformations that do not sup-
port Query Folding after those that do. For more information about Query Folding, you can
read Koen Verbeeck’s article, “Query Folding in Power Query to Improve Performance” at
https://www.mssqltips.com/sqlservertip/3635/query-folding-in-power-query-to-improve-
performance/.

The last option in the menu when you right-click on a step is Properties. In this window,
you can rename the step, as well as add a comment to it. For example, we can include the fol-
lowing comment: “Less is more.” This comment will be visible in Advanced Editor. You can see
the full query, including the comment, in Listing 1-4.

LISTING 1-4 A comment next to the Removed Other Columns step

let
 Source = SaleInitial,
 // Less is more
 #"Removed Other Columns" = Table.SelectColumns(Source,{"City Key", "Customer Key",
"Bill To Customer Key", "Stock Item Key", "Invoice Date Key", "Delivery Date Key",
"Salesperson Key", "WWI Invoice ID", "Quantity", "Unit Price", "Tax Rate", "Total
Excluding Tax", "Tax Amount", "Profit", "Total Including Tax"})
in
 #"Removed Other Columns"

It is always a good practice to give your queries friendly names, because they later become
tables in your data model. If reports are going to be built by another person, they may be
confused by technical terms such as “fact” and “dimension.” This also makes the DAX formulas
less readable.

To rename a query, you can either right-click on it and select Rename, or you can rename it
in query properties in the Query Settings pane on the right. In our example, queries should be
renamed like in Table 1-2.

TABLE 1-2 Old and new query names

Old name New Name

Fact Sale Sale

Dimension City City

Dimension Customer Customer

Dimension Date Date

Dimension Employee Employee

Dimension Stock Item Stock Item

Let’s leave the SaleInitial query named as-is. You can note that it contains the same data
as the Sale query, and it has the unnecessary columns. You can either delete the query and
replace the code of the Sale query with code from Listing 1-1, or you can disable loading of the

From the Library of zhanl mamykova

https://www.mssqltips.com/sqlservertip/3635/query-folding-in-power-query-to-improve-performance/
https://www.mssqltips.com/sqlservertip/3635/query-folding-in-power-query-to-improve-performance/

ptg999

 42 CHAPTER 1 Consuming and transforming data by using Power BI Desktop

SaleInitial query. Note that if you try to delete SaleInitial now, you will get the error message
shown in Figure 1-23.

FIGURE 1-23 Error when deleting the SaleInitial query

In this case, we can proceed with replacing the code of the Sale query with code from List-
ing 1-1 and then delete the SaleInitial query, but disabling loading of SaleInitial is a perfectly
valid option, too.

We can disable loading of a query in two ways: first, we can right-click on it and deselect
Enable Load; second, we can click on the All Properties hyperlink in the Query Settings pane.
The Query Properties window can also be opened by right-clicking on a query and selecting
Properties. When you click on the hyperlink, the Query Properties window opens, where you
can set the query name and description; you can also enable or disable the load of the query
to report and include or exclude it from report refresh. The latter two options are enabled by
default. You can uncheck Enable Load To Report now. This also automatically excludes the
query from report refresh. In the description area, you can enter some text, which will appear
in the Query Dependencies view. As an example, enter Staging Sale query into the Description
field.

At this stage, if we open Query Dependencies, we will see that the Sale query comes from
the SaleInitial query, and loading of the latter is disabled. You can see the Query Dependencies
window in Figure 1-24.

From the Library of zhanl mamykova

ptg999

 Skill 1.2: Perform transformations CHAPTER 1 43

FIGURE 1-24 Query Dependencies view after disabling load of SaleInitial

Disabling the load of a query does not disable the load of queries that reference it, so the
Sale query will still be loaded and contain all the data it should. Back in Power Query Editor, in
the Queries pane on the left, the SaleInitial’s name is now displayed in italics, and the font color
is darker compared to other queries.

You can duplicate and reference queries by right-clicking on one of them and selecting
Duplicate or Reference, respectively. Duplicating a query does exactly what the name implies:
it creates a copy of the query with the same steps. This way, there is no dependency on the
original query, and it can be safely deleted if need be. Referencing, on the other hand, creates
a new query with a single step called Source, which references the original query. We have
already seen the effects of a query reference with Sale and SaleInitial, where the former refer-
enced the latter. There was a dependency, which prevented SaleInitial from being deleted.

Whether you need to duplicate or reference a query depends on your objectives. In general,
it is preferable to reference queries rather than creating copies of them, because that way you
follow the “don’t repeat yourself” principle.

If you want to duplicate more than one query at once, you can do so by selecting the que-
ries while holding either Ctrl or Shift key and clicking Copy, Paste. Note that this allows you
to paste your queries to other destinations, such as Excel’s Power Query or even Notepad for
documentation purposes.

From the Library of zhanl mamykova

ptg999

 44 CHAPTER 1 Consuming and transforming data by using Power BI Desktop

Queries can be grouped into folders for easier navigation when you have many queries.
Right-click on the Sale query and select Move to Group > New Group. Enter Facts in the
Name field, and click OK. This creates two groups, both of which have folder icons next to
them: Fact Tables, and Other Queries. The numbers in square brackets next to the groups
display the number of queries in them. Now select the following queries and move them to a
new group called Dimensions:

 ■ City

 ■ Customer

 ■ Date

 ■ Employee

 ■ Stock Item

This leaves only the SaleInitial query in the Other Queries group. You can move the query
to the Facts group by dragging and dropping it. This leaves the Other Queries group empty.
Groups can also be reordered as necessary.

Basic transformations
To continue with our example, we need to add sales targets to Power Query Editor. Start by
creating a connection to the Target.txt file from this book’s companion files. From Power Query
Editor, select New Source > Text/CSV and navigate to the file. Once you click OK, and accept
default settings, your Power Query Editor window will look similar to Figure 1-25.

FIGURE 1-25 Power Query Editor after connecting to Target.txt

From the Library of zhanl mamykova

ptg999

 Skill 1.2: Perform transformations CHAPTER 1 45

By default, Power Query tries to detect if there are headers in your text file, and if it decides
there are headers, it promotes them from the first row to header names. Also, Power Query au-
tomatically detects data types and sets them to what it thinks is appropriate. In our case, Power
Query detected no headers and set all columns to type text.

The automatic detection of headers and data types does not always happen correctly, and
we should review the steps necessary to apply the transformations manually. We can right-
click on the Changed Type step and select Delete. Only one step is left now: Source. We see
headers in the first row, and all columns are of type text, given ABC displayed to the left of its
names.

To promote the first row to headers, select Home > Transform > Use First Row As Head-
ers. Note that there is an option to demote headers by selecting Use Headers As First Row.
Alternatively, you can select Transform > Table > Use First Row As Headers. Once we pro-
mote the headers, Power Query again detects the data types automatically as text. We can re-
move this step again by clicking on the cross icon to the left of the Changed Type step’s name.
To set a column data type, click on the data type icon and select the desired data type. Select
Whole Number For The Year column. Data types can also be selected by clicking Home >
Transform, Data Type, As Well As Transform > Any Column > Data Type.

You will notice that in row 13, column CalendarYear, we have an error. You can click on the
cell without clicking on the Error hyperlink to see the error message: “DataFormat.Error: We
couldn’t convert to Number. Details: *To be confirmed.” This means that Power Query tried to
convert a text string, “*To be confirmed,” to number and failed. As it often happens in Power
Query, there is more than one way to fix the error.

In case you want to filter the data you are importing, you have two options: either by keep-
ing the specific rows or removing rows. Both options can be found by clicking Home, Reduce
Rows.

Under Keep Rows, you have the following options:

 ■ Keep Top Rows, where you specify the number of top rows to keep.

 ■ Keep Bottom Rows, for which you pick the number of bottom rows to keep.

 ■ Keep Range of Rows, which skips a specified number of top rows and then keeps the
chosen number of rows.

In addition to the first three options, which work on whole tables, you have Keep Dupli-
cates and Keep Errors, both of which can work on either the whole table or the selected
columns only. For example, if you select the whole table and choose Keep Duplicates, you
will only see the rows that are complete duplicates of each other. However, if you choose only
one column and click Keep Duplicates, you will get the rows where the values in the selected
column are duplicates, regardless of other columns’ values.

Under Remove Rows, you have six options:

 ■ Remove Top Rows Removes a specified number of top rows. Works on the whole
table only.

From the Library of zhanl mamykova

ptg999

 46 CHAPTER 1 Consuming and transforming data by using Power BI Desktop

 ■ Remove Bottom Rows Removes a specified number of bottom rows. Works on the
whole table only.

 ■ Remove Alternate Rows Removes rows following a user-supplied pattern: it starts
with a specified row, then alternates between removing the selected number of rows
and keeping the chosen number of rows. Works on the whole table only.

 ■ Remove Duplicates Removes rows that are duplicates of other rows. Works on either
the whole table or the selected columns only.

 ■ Remove Blank Rows Removes rows that completely consist of either empty strings or
nulls; if you need to remove blank values from one column, you can click on the arrow to
the right of a column’s name and click Remove Empty. Works on the whole table only.

 ■ Remove Errors Removes rows that contain errors. Works on either the whole table or
the selected columns only.

In case of Remove Duplicates and Remove Errors, there is a difference between ap-
plying these options to all selected columns or the whole table. In the first case, if you have
new columns added to your query, the functions will not work on the new columns, because
selecting all columns keeps their names in the code. To remove duplicates or errors from the
whole table, select the table icon above row numbers and choose either Remove Duplicates
or Remove Errors.

MORE INFO WORKING WITH ERRORS IN POWER QUERY

The topic of error handling is reviewed in more detail later in the chapter, in Skill 1.3:
“Cleanse data.”

In this case, we can remove the bottom row. Furthermore, we do not need the 2012 targets,
as there is no sales data for the year. Therefore, we can remove the top three rows as well,
which should leave us with nine rows. To achieve this result, select Home > Reduce Rows >
Keep Rows > Keep Range of Rows. Type 4 for the First Row and 9 for the Number of Rows,
and then click OK. If you open Advanced Editor, you should see a script like the one shown in
Listing 1-5.

LISTING 1-5 M query after removing unnecessary rows

let
 Source = Csv.Document(File.Contents("C:\Companion\Target.txt"),[Delimiter=";",
 Columns=3, Encoding=1252, QuoteStyle=QuoteStyle.None]),
 #"Promoted Headers" = Table.PromoteHeaders(Source, [PromoteAllScalars=true]),
 #"Changed Type" = Table.TransformColumnTypes(#"Promoted Headers",{{"CalendarYear",
 Int64.Type}}),
 #"Kept Range of Rows" = Table.Range(#"Changed Type",3,9)
in
 #"Kept Range of Rows"

From the Library of zhanl mamykova

ptg999

 Skill 1.2: Perform transformations CHAPTER 1 47

Note that the last step’s formula is Table.Range(#”Changed Type”,3,9). Even though we
specified 4 and 9 as parameters in Keep Range of Rows settings, we see 3 and 9 in the for-
mula. This is because Power Query has 0-based index system, meaning that the first row is row
number 0, the second row is row number 1, and so on.

The next thing we need to do is turn this dataset into the appropriate format. We are look-
ing to get the following three columns: Calendar Year, Bill To Customer, and Target. The last
column should be in dollars, not millions of dollars.

To get the first column, Calendar Year, rename CalendarYear and insert a space between the
two words. There are four ways to rename a column:

 ■ Double-click its name and enter a new name.

 ■ Right-click its name and select Rename.

 ■ Select a column and press F2.

 ■ Select Transform, Any Column, Rename.

The second and third columns require some more work. First, we need to separate the
target values from Bill To Customer. Second, where appropriate, we need to append the office
name in brackets to Bill To Customer. Finally, we should set the correct data types and names.

We can start by splitting the Bill To Target column. To split a column, right-click on its name
and select Split Column. The same button can be found in Home > Transform. You will see
two options: either split by the delimiter or by the number of characters. In our case, we should
select By Delimiter because our Target values are separated from Bill To Customer values by a
space, we should select Space in the delimiter drop-down list. Below the delimiter selection,
we have three Split At options: Left-most delimiter, Right-most delimiter, and Each occurrence
of the delimiter. The first two options split a column in two, while the number of columns the
third option splits in depends on the number of delimiters in column values. This number of
columns can be specified manually in Advanced Options below. In Advanced Options, you also
can specify the quote character, as well as whether you want to split your values into columns
or rows. Also, if you chose to split by a custom delimiter, you can split using special characters,
such as a carriage return or line feed. In our case, we should change the Split at option from
Each Occurrence of the delimiter to Right-most delimiter and leave the other settings at
their defaults.

Once you click OK, the column will be split into two: Bill To Target.1 and Bill To Target.2.
Note that Power Query has once again detected data types automatically. If this feature is un-
desirable, it can be turned off by clicking File > Options, And Settings > Options > Current
File > Data Load > Type Detection. If you need Power Query to detect a column’s data type,
you can select Transform > Any Column > Detect Data Type.

Before merging Bill To Target.1 and Office, we need to apply some transformations to the
Office column. The column’s values should be in brackets in case they are not blank, and each
word should be capitalized.

From the Library of zhanl mamykova

ptg999

 48 CHAPTER 1 Consuming and transforming data by using Power BI Desktop

IMPORTANT BLANK AND NULL VALUES IN POWER QUERY

In Power Query, blanks and nulls are different. Blank values are zero-length text strings,
while nulls are empty values. The implication of this is that you can combine a text string
with a blank value, but a text string combined with a null value results in a null value.

To replace a blank value by null value, right-click on the Office column and select Replace
Values. The same button can be found by clicking Home > Transform, under Use First Row
As Headers; as well as in Transform > Any Column grouping. We should leave the first field,
Value to Find, blank. In the second field, Replace With, we should type null. In this case, we
should leave the Advanced Options as-is, but if we needed, we could opt to match entire cell
contents, as well as replace using special characters. Your Replace Values window should look
like Figure 1-26.

FIGURE 1-26 Replace Values window

When you click OK, in the Office column instead of blank values you should see null written
in italic and aligned to the right. To capitalize each word in the Office column values, right-click
on the column name and select Transform > Capitalize Each Word. There are a few other
options in Transform:

 ■ Lowercase transforms all symbols into lowercase

 ■ Uppercase transforms all symbols into uppercase

 ■ Trim removes extra spaces, including at beginning and end of text strings

 ■ Clean removes non-printable characters

 ■ Length replaces a text string with the number of characters in it

 ■ JSON parses JSON contents in a string

 ■ XML parses XML contents in a string

From the Library of zhanl mamykova

ptg999

 Skill 1.2: Perform transformations CHAPTER 1 49

One of the ways to append a text string to a column value is by clicking Transform > Text
Column > Format > Add Prefix or Add Suffix. We should add (as a prefix and) as a suffix.
Note that if we didn’t replace blank values with nulls a few steps back; we would see () instead
of nulls.

We can now merge Bill To Target.1 and Office in one column. Start by clicking on the Bill To
Target.1 column header, then hold the Ctrl key and click on the Office column header. Then
right-click either of the two selected columns and select Merge Columns. Alternatively, you
can select Transform > Text Column > Merge Columns. In the Merge Columns settings
window, we should select Space as a separator, and we should call the new column Bill To
Customer. Note that if you selected the Office column first, then Bill To Target.1, the merge
would be done in this order instead, so the order in which you click on column headers mat-
ters..

Next, we should rename the column Bill To Target.2 to Target. Because the figures are
in millions of dollars and we want them to be in dollars, we should multiply the values by
1,000,000. Before we can do that, we need to make sure that all column values are numbers.
Note that the last value contains an asterisk. If we multiply it by one million, we will get an error.
To remove the asterisk right-click on the Target column and select Replace Values. Specify
* as Value to Find, and leave the Replace With value empty. We should then change the
column’s data type to a whole number. Once we’ve done that, we can select the Target column,
then click Transform tab, > Number Column > Standard > Multiply and enter 1000000.

Columns can be reordered by dragging and dropping. Alternatively, we can select the col-
umns we want to move, then do one of the following:

 ■ Select Transform > Any Column > Move.

 ■ Right-click on the header of one of the columns and select Move, then choose where to
move.

Either method gives you these options: Left, Right, To Beginning, and To End. If you are
moving more than one column using this method, the order in which you select the columns
matters. In our case, we just want the Target column to be moved to the end.

Finally, we can sort rows in tables. One way to do it is to select the drop-down arrow next
to a column name, then select either Sort Ascending or Sort Descending. Alternatively, we
can select a column, then click Home > Sort > Sort Ascending or Sort Descending. Let’s
sort the Bill To Customer in descending order. We can then sort the Calendar Year column in
ascending order. Note that there is a small 1 next to the drop-down arrow button in the Bill To
Customer column’s header, and there’s a small 2 in the Calendar Year header. These numbers
mean that the table is first sorted by Bill To Customer, then by Calendar Year.

After all the transformations, the full code of the Target query should be as shown in Listing
1-6.

From the Library of zhanl mamykova

ptg999

 50 CHAPTER 1 Consuming and transforming data by using Power BI Desktop

LISTING 1-6 The complete Target query script

let
 Source = Csv.Document(File.Contents("C:\Companion\Target.txt"),[Delimiter=";",
 Columns=3, Encoding=1252, QuoteStyle=QuoteStyle.None]),
 #"Promoted Headers" = Table.PromoteHeaders(Source, [PromoteAllScalars=true]),
 #"Changed Type" = Table.TransformColumnTypes(#"Promoted Headers",{{"CalendarYear",
 Int64.Type}}),
 #"Kept Range of Rows" = Table.Range(#"Changed Type",3,9),
 #"Renamed Columns" = Table.RenameColumns(#"Kept Range of Rows",{{"CalendarYear",
 "Calendar Year"}}),
 #"Split Column by Delimiter" = Table.SplitColumn(#"Renamed Columns", "Bill To
 Target", Splitter.SplitTextByEachDelimiter({" "}, QuoteStyle.Csv, true), {"Bill To
 Target.1", "Bill To Target.2"}),
 #"Changed Type1" = Table.TransformColumnTypes(#"Split Column by Delimiter",{{"Bill
To
 Target.1", type text}, {"Bill To Target.2", type text}, {"Office", type text}}),
 #"Replaced Value" = Table.ReplaceValue(#"Changed
 Type1","",null,Replacer.ReplaceValue,{"Office"}),
 #"Capitalized Each Word" = Table.TransformColumns(#"Replaced Value",{{"Office",
 Text.Proper, type text}}),
 #"Added Prefix" = Table.TransformColumns(#"Capitalized Each Word", {{"Office", each
 "(" & _, type text}}),
 #"Added Suffix" = Table.TransformColumns(#"Added Prefix", {{"Office", each _ & ")",
 type text}}),
 #"Merged Columns" = Table.CombineColumns(#"Added Suffix",{"Bill To Target.1",
 "Office"},Combiner.CombineTextByDelimiter(" ", QuoteStyle.None),"Bill To Customer"),
 #"Renamed Columns1" = Table.RenameColumns(#"Merged Columns",{{"Bill To Target.2",
 "Target"}}),
 #"Replaced Value1" = Table.ReplaceValue(#"Renamed
 Columns1","*","",Replacer.ReplaceText,{"Target"}),
 #"Changed Type2" = Table.TransformColumnTypes(#"Replaced Value1",{{"Target",
 Int64.Type}}),
 #"Multiplied Column" = Table.TransformColumns(#"Changed Type2", {{"Target", each _ *
 1000000, type number}}),
 #"Reordered Columns" = Table.ReorderColumns(#"Multiplied Column",{"Calendar Year",
 "Bill To Customer", "Target"}),
 #"Sorted Rows" = Table.Sort(#"Reordered Columns",{{"Bill To Customer",
 Order.Descending}, {"Calendar Year", Order.Ascending}})
in
 #"Sorted Rows"

From the Library of zhanl mamykova

ptg999

 Skill 1.2: Perform transformations CHAPTER 1 51

At this stage, your Power Query Editor should look like Figure 1-27.

FIGURE 1-27 Power Query Editor after applying all transformations to Target.txt

If we wanted to reverse the order of rows, we could select Transform > Table > Reverse
Rows.

MORE INFO CLEAN AND TRANSFORM YOUR DATA WITH THE POWER QUERY EDITOR

For more examples of transforming data in Power Query, see the “Clean and Transform Your
Data with the Power Query Editor” page on Power BI Guided Learning at https://powerbi.
microsoft.com/en-us/guided-learning/powerbi-learning-1-3-clean-and-transform-data-
with-query-editor/.

From the Library of zhanl mamykova

https://powerbi.microsoft.com/en-us/guided-learning/powerbi-learning-1-3-clean-and-transform-data-with-query-editor/
https://powerbi.microsoft.com/en-us/guided-learning/powerbi-learning-1-3-clean-and-transform-data-with-query-editor/
https://powerbi.microsoft.com/en-us/guided-learning/powerbi-learning-1-3-clean-and-transform-data-with-query-editor/

ptg999

 52 CHAPTER 1 Consuming and transforming data by using Power BI Desktop

Advanced transformations
So far, we have reviewed the basic transformations, and now we can review the advanced
transformations. We can continue with our example by adding 2016 targets.

First, we need to connect to Target20152016.xlsx from this book’s companion files. There is
just one sheet, and we want to import it. Once you click OK, you see pivoted data that is not
suitable for analysis; you need to transform it before we can use it. Furthermore, we can note
that there are two levels of headers: year and month. Finally, there are some subtotals, and we
should get rid of them. Before continuing, we should rename our query to Target20152016
and disable loading of it.

To address the two-row header problem, we can transpose our table. To do that, select
Transform > Table > Transpose. This switches columns to rows and rows to columns. After
transposing the table, you should see a table similar to Figure 1-28.

FIGURE 1-28 Power Query Editor after transposing table

Note that each year is written only once, and between year values we see nulls. Fix this by
filling the values below years with years above them. To do that, right-click on Column1 and
select Fill > Down. You should also filter out subtotals. Do so by clicking on the AutoFilter
drop-down arrow next to Column1 and de-selecting 2015 Total, 2016 Total, and Grand Total.
Note that we want to keep the null value in, as it belongs to the first row where the Bill to Cus-
tomer values are.

At this stage, we need to click Home > Transform > Use First Row As Headers. Now you
can see that the last column is Grand Total, so you can safely remove it.

From the Library of zhanl mamykova

ptg999

 Skill 1.2: Perform transformations CHAPTER 1 53

To turn this pivoted table into a suitable format, unpivot some of its columns. Power Query
has a very useful function called Unpivot. There are two ways it can be used: either unpivot
specific columns, or select the columns to keep as-is and unpivot all other columns. The latter
option is preferable when there is a possibility of more columns being added later. In our case,
you can select the first two columns, then right-click the header of either of them and select
Unpivot Other Columns. Note that there are also other options: Unpivot Columns and Unpiv-
ot Only Selected Columns. The function used by Unpivot Columns is the same one as Unpivot
Other Columns uses: Table.UnpivotOtherColumns. The only difference is in the columns you
select—either the ones you want to unpivot, in case of Unpivot Columns, or the columns you
want to keep, as in the case of Unpivot Other Columns. Unpivot Only Selected Columns uses a
different function: Table.Unpivot.

After you have unpivoted the columns, you can see that the Bill to Customer values are in
the column called Attribute, and the values are in the column called Value. You should now
rename the columns as shown in Table 1-3.

TABLE 1-3 Old and new column names

Old name New name

Column1 Year

Row Labels Month

Attribute Bill To Customer

Value Target

Let’s summarize our table by Year and Bill To Customer, as we do not need the monthly targets.
To do that, you can select Year first, then click Home > Transform > Group By Or Transform
> Table > Group By. The Group By window then opens; you’ll see a radio button to switch
between Basic and Advanced settings. Specify one or more columns to group by and how
to aggregate data. To group by more than one column, switch to Advanced settings, or you
could have pre-selected multiple columns before clicking Group By. Once you have done it,
click Add Grouping and select Bill To Customer. In New Column Name, type Target instead
of Count, and select Sum as the operation and Target as the column. What this means is that
we are doing a summation of the Target column and calling the new column Target as well.

Note that there are other aggregation options in the Operation drop-down list: Average,
Median, Min, Max, Count Rows, Count Distinct Rows, and All Rows. The last option, All Rows,
groups all relevant rows into a table, so you will have nested tables as values in your new col-
umn instead of scalar values produced by other operations.

Click OK to see a new table that has only six rows and three columns. At this point, if you
open Advanced Editor, you should see code similar to Listing 1-7.

From the Library of zhanl mamykova

ptg999

 54 CHAPTER 1 Consuming and transforming data by using Power BI Desktop

LISTING 1-7 M query of Target20152016

let
 Source = Excel.Workbook(File.Contents("C:\Companion\Target20152016.xlsx"), null,
 true),
 Sheet1_Sheet = Source{[Item="Sheet1",Kind="Sheet"]}[Data],
 #"Changed Type" = Table.TransformColumnTypes(Sheet1_Sheet,{{"Column1", type text},
 {"Column2", Int64.Type}, {"Column3", Int64.Type}, {"Column4", Int64.Type}, {"Column5",
 Int64.Type}, {"Column6", Int64.Type}, {"Column7", Int64.Type}, {"Column8", Int64.Type},
 {"Column9", Int64.Type}, {"Column10", Int64.Type}, {"Column11", Int64.Type},
 {"Column12", Int64.Type}, {"Column13", Int64.Type}, {"Column14", type any},
 {"Column15", Int64.Type}, {"Column16", Int64.Type}, {"Column17", Int64.Type},
 {"Column18", Int64.Type}, {"Column19", Int64.Type}, {"Column20", type any},
 {"Column21", type any}}),
 #"Transposed Table" = Table.Transpose(#"Changed Type"),
 #"Filled Down" = Table.FillDown(#"Transposed Table",{"Column1"}),
 #"Filtered Rows" = Table.SelectRows(#"Filled Down", each ([Column1] = null or
 [Column1] = 2015 or [Column1] = 2016)),
 #"Promoted Headers" = Table.PromoteHeaders(#"Filtered Rows",
 [PromoteAllScalars=true]),
 #"Changed Type1" = Table.TransformColumnTypes(#"Promoted Headers",{{"Column1",
 Int64.Type}, {"Row Labels", Int64.Type}, {"N/A", Int64.Type}, {"Tailspin Toys (Head
 Office)", Int64.Type}, {"Wingtip Toys (Head Office)", Int64.Type}, {"Grand Total",
 Int64.Type}}),
 #"Removed Columns" = Table.RemoveColumns(#"Changed Type1",{"Grand Total"}),
 #"Unpivoted Other Columns" = Table.UnpivotOtherColumns(#"Removed Columns",
 {"Column1", "Row Labels"}, "Attribute", "Value"),
 #"Renamed Columns" = Table.RenameColumns(#"Unpivoted Other Columns",{{"Column1",
 "Calendar Year"}, {"Row Labels", "Month"}, {"Attribute", "Bill To Customer"}, {"Value",
 "Target"}}),
 #"Grouped Rows" = Table.Group(#"Renamed Columns", {"Calendar Year", "Bill To
 Customer"}, {{"Target", each List.Sum([Target]), type number}})
in
 #"Grouped Rows"

Notice how we have 2015 targets in both Target and Target20152016 queries. Assume we are
told that the figures in the Target20152016 query are more accurate, and we should use them
instead of figures in the Target query. To filter out 2015 values from the Target query, select
the query, then click on the drop-down button next to the Calendar Year and select Number
Filters > Less Than. In the opened Filter Rows window, you will see the basic settings, which
allow you to enter two conditions joined in either “And” or “Or” logic. Switching to Advanced
Settings will let you specify as many conditions as required, and you can refer to other col-
umns with the user interface. In our case, we can keep the settings basic and only select 2015
from the drop-down list. As an alternative, you can also have entered 2015 manually. Once
you’ve finished that, click OK, and this will filter Targets to 2013 and 2014 only. To prevent
confusion, rename the Target query to Target20132014. You should also disable its load by
right-clicking on the query and de-selecting Enable Load.

From the Library of zhanl mamykova

ptg999

 Skill 1.2: Perform transformations CHAPTER 1 55

NOTE USING VALUE FILTERS IN POWER QUERY

Power Query gives you options to filter numbers, text, and datetime values based on speci-
fied criteria. For numbers, you can select from the following options:

 ■ Equals

 ■ Does Not Equal

 ■ Greater Than

 ■ Greater Or Equal To

 ■ Less Than

 ■ Less Than Or Equal To

 ■ Between

For text values, you can choose from the following:

 ■ Equals

 ■ Does Not Equal

 ■ Begins With

 ■ Does Not Begin With

 ■ Ends With

 ■ Does Not End With

 ■ Contains

 ■ Does Not Contain

When applying text filters, it is important to remember that Power Query is case-sensitive.
This can be overridden by using Comparer.OrdinalIgnoreCase. Imke Feldmann wrote about
it on her blog at http://www.thebiccountant.com/2016/10/27/tame-case-sensitivity-power-
query-powerbi/.

Datetime values can be filtered in more than 50 different ways, including absolute and rela-
tive filters. The relative filters, such as Last Quarter or Next Month, use the local date and
time as at query execution time.

All filter options above can be combined with “And” or “Or” logic using advanced settings.

Appending queries
Let’s combine the Target 20132014 and Target20152016 queries into one Target query. To do
that, select either of them and click Home > Combine > Append Queries > Append Queries
as New. This option will create a new query that will consist of appended queries; selecting
Append Queries appends another query to the currently selected one, keeping it in the same
query.

From the Library of zhanl mamykova

http://www.thebiccountant.com/2016/10/27/tame-case-sensitivity-power-query-powerbi/
http://www.thebiccountant.com/2016/10/27/tame-case-sensitivity-power-query-powerbi/

ptg999

 56 CHAPTER 1 Consuming and transforming data by using Power BI Desktop

Selecting Append Queries As New opens the Append window, where we can select a
query to append to the currently selected query. In this case, use the basic settings, because
we are appending two tables. If we had three or more tables to append, we could select Three
Or More Tables, and that would allow us to select more than two tables. If you chose Tar-
get20132014 as the primary table, select Target20152016 as the table to append to the pri-
mary table and click OK. This creates a new query called Append1, which consists of only one
step: Source. The step uses the Table.Combine function to append queries. We should rename
the query to Target.

Let’s open the Query Dependencies view, noticing two groups of queries: one group of
queries, on the left, originates from a SQL Server database; the other group of queries, on the
right, are independent and originate from files. You can see the Query Dependencies view at
this stage in Figure 1-29.

FIGURE 1-29 Query Dependencies view after appending queries

Merging queries
If appending queries is combining queries vertically, then merging queries is combining them
horizontally. Our Target query can be enriched with target quantities for each year and cus-
tomer combination. Because we are going to add other targets, we should rename our Target
column in the Target query. A good name would be Target Amount Excluding Tax.

From the Library of zhanl mamykova

ptg999

 Skill 1.2: Perform transformations CHAPTER 1 57

Once you have renamed the column, connect to a new text file, TargetQuantity.txt, from
this book’s companion files folder. In the connection settings window, we can accept the
default settings and click OK. The query is named TargetQuantity by default, and we can keep
the name. We should disable its loading by right-clicking on the query and de-selecting Enable
Load.

To merge two queries, first select the primary query, then click Home > Combine > Merge
Queries. In our case, we should select Merge Queries, not Merge Queries as New, because
we do not want to create another query.

In the Merge dialog box, shown in Figure 1-30, the first table is pre-selected, and in this case,
it is the Target query. You can see a query preview below its name. Under the preview area, se-
lect the second query from the drop-down list. After making a selection—TargetQuantity—
you will see its preview. Below the preview, select Join Kind. These are the options available:

 ■ Left Outer Keeps all rows from the first table and matching rows from the second
table

 ■ Right Outer Keeps all rows from the second table and matching rows from the first
table

 ■ Full Outer Keeps all rows from both tables

 ■ Inner Keeps matching rows only

 ■ Left Anti Keeps rows that are present in the first table but not in second

 ■ Right Anti Keeps rows that are present in the second table but not in first

The last two options can be particularly useful when you are looking for items that are
present in one table but not the other. In our case, we can keep Left Outer selected. Then
you need to select the matching columns. In other words, we need to tell Power Query how
to match the tables. Hold the Ctrl key and select Calendar Year, Bill To Customer in Target.
Note that Calendar Year has a small numeral 1 included in its header, and Bill To Customer has
numeral 2 in its header.

After following the same steps for TargetQuantity, we will see a message reading “The
selection has matched 10 out of the first 12 rows.” Even though it is not a perfect match, we can
leave it as is for now, and we will then check which rows did not have a match. Click OK.

From the Library of zhanl mamykova

ptg999

 58 CHAPTER 1 Consuming and transforming data by using Power BI Desktop

FIGURE 1-30 Merge dialog box

After clicking OK, a new column called TargetQuantity is added to the Target table. Note a
new step: Merged Queries. This column consists of tables that contain matching rows from the
TargetQuantity table. This column can be expanded by clicking the double arrow button. Click-
ing it opens a window where you can select which columns you would like to add and whether
you want to aggregate them. The options are shown in Figure 1-31.

From the Library of zhanl mamykova

ptg999

 Skill 1.2: Perform transformations CHAPTER 1 59

FIGURE 1-31 Table expansion options

Column names can be displayed either in the natural or alphabetical order. If you select
Aggregate, you will be able to select columns along with their aggregation methods. For
example, you can select Bill To Customer. In this case, choose Expand instead of Aggregate.
Also, because we already have Calendar Year and Bill To Customer in our query, we can leave
only Target Quantity selected.

If we leave the Use Original Column Name As Prefix option checked, the expanded col-
umn will be called TargetQuantity. In our case, this option should be unchecked. We can now
click OK. We can see a new column in place of the TargetQuantity column: Target Quantity.
This column contains matching Target Quantity values from TargetQuantity query. In the Ap-
plied Steps pane, we can notice a new step: Expanded TargetQuantity.

Note that there are two null values in the new column. This is in line with the message
shown in Figure 1-29, and it happened because the values did not match perfectly. If we inves-
tigate why, we will see that some values in the Bill To Customer column in the Target2032014
query have spaces in the end, and they need to be trimmed for the merge to be correct. If we
trim the spaces now, it will be of no use, because the merge has already taken place. Instead,
we should go to the Renamed Columns step in the Target query, then right-click on the Bill
To Customer column and select Transform > Trim. In the subsequent dialog box, you will be
asked if you are sure to insert a step, and you can click Insert to confirm. A new step, Trimmed
Text, will be inserted between Renamed Columns and Merged Queries. Once you go to the
final step, Expanded TargetQuantity, you will note that nulls will have disappeared, because
the merge has now been done with the correct values.

Because we have finished adding targets to our data, we can group all four target-related
queries into a group called Targets, leaving no queries in the Other Queries group.

From the Library of zhanl mamykova

ptg999

 60 CHAPTER 1 Consuming and transforming data by using Power BI Desktop

MORE INFO MORE ADVANCED DATA SOURCES AND TRANSFORMATION

For more examples of advanced data transformation, see “Shape and combine data in Power
BI Desktop” at https://powerbi.microsoft.com/en-us/documentation/powerbi-desktop-
shape-and-combine-data/.

For video examples, see “More Advanced Data Sources and Transformation” on Power BI
Guided Learning at https://powerbi.microsoft.com/en-us/guided-learning/powerbi-learning-
1-4-advanced-data-sources-and-transformation/.

Creating new columns in tables
You can enrich your data model by adding columns to your tables. From the Add Column tab,
in the General group, you can select the following options:

 ■ Column from Examples

 ■ Custom Column

 ■ Invoke Custom Function

 ■ Conditional Column

 ■ Index Column

 ■ Duplicate Column

In the examples that follow, we will review these options, and we will be removing the new
columns after creating them because we do not need them in our data model.

Column from Examples
Column from Examples allows you to create a new column by typing one or more values. If
the values you type come from one or more existing columns, Power Query will be looking for
ways to extract the new values from the existing ones. When selecting Column from Exam-
ples, there are two options: From All Columns and From Selection. The difference between
the two options is the number of columns Power Query will be scanning when trying to arrive
at the same values. When you select either option, the data preview pane is transformed: the
Queries and Query Settings panes are shaded. Also, there is a dialog area above column head-
ers and a new column area on the right where you can type values. By default, the new column
is called Column1, unless you already have a column with this name. You can change the name
by double-clicking on Column1 or selecting the new column and pressing F2. Every existing
column has a check box in its header, which serves the same purpose as the From All Col-
umns and From Selection options before: the check boxes determine which columns Power
Query will be working with when creating a column from examples. If you type a few values,
but Power Query cannot find a way to reproduce your results with a formula, it will display
the following message in the dialog area above column headers: “Please enter more sample
values.” Once Power Query finds a suitable transformation, its formula will be displayed instead
of the message. If you have not changed the default column name, Power Query might give it
another name it deems appropriate.

From the Library of zhanl mamykova

https://powerbi.microsoft.com/en-us/documentation/powerbi-desktop-shape-and-combine-data/
https://powerbi.microsoft.com/en-us/documentation/powerbi-desktop-shape-and-combine-data/
https://powerbi.microsoft.com/en-us/guided-learning/powerbi-learning-1-4-advanced-data-sources-and-transformation/
https://powerbi.microsoft.com/en-us/guided-learning/powerbi-learning-1-4-advanced-data-sources-and-transformation/

ptg999

 Skill 1.2: Perform transformations CHAPTER 1 61

We can review the Column from Examples functionality using the following example. Select
the Calendar Year column and click Add Column > Column from Examples > From Selec-
tion. The interface transforms, and we can enter sample values into the new column. Enter
numbers that are greater than the year by one. For example, if you see “2013” in the first row,
enter 2014. After we enter one value, Power Query will display a message asking us to enter
more sample values. If we enter one more, Power Query will display the following text instead
of the message: “Transform: [Calendar Year] + 1”. What follows “Transform:” is a formula written
in M. Note that the column name is now “Addition” instead of “Column1.” Clicking OK creates
a new column and a new query step called Inserted Addition. Because this column is not
needed in the data model, you can delete this step.

Custom Column
When you click Add Column > General > Custom Column, the Custom Column window
opens where you can enter the new column name and its formula. There is already an equals
sign in the custom column formula field, which cannot be removed. In the right part of the
window, there is a list of available columns in the currently selected table. You can add them by
either double-clicking on them or by selecting one of them and clicking the Insert button. To
reproduce the same column that we created with Column from Examples, double-click Calen-
dar Year in the columns list and type + 1 after. The whole formula will read as follows:

=[Calendar Year] + 1

Clicking OK will create the new column, as well as add a step called Added Custom. Note
that the column’s data type is not defined, and you need to apply it manually. If you followed
along with this example, you could remove this column because it is not required in our data
model.

Invoke Custom Function
Invoke Custom Function applies a custom function to each row of a table. For the purposes of
this example, create a function that adds one to Calendar Year. Click Home > New Source >
Other > Blank Query. Rename the query to fAddOne. Open Advanced Editor, delete every-
thing, and paste the following code shown in Listing 1-8.

LISTING 1-8 fAddOne custom function

(MyNumber as number) as number =>
let
 Source = MyNumber + 1
in
 Source

Note that the query’s icon is a function icon, and instead of data preview you see a prompt
to enter parameter and invoke it. If you enter 2 and click Invoke, a new query, Invoked Func-
tion, is created with a 123 icon, meaning it is a number. This example shows that not all queries

From the Library of zhanl mamykova

ptg999

 62 CHAPTER 1 Consuming and transforming data by using Power BI Desktop

in Power Query need to be tables; queries can return scalar values or be functions, among
other things. We can now go back to the Target query and select the Calendar Year column,
then click Add Column > General > Invoke Custom Function. In the Invoke Custom Func-
tion dialog box, define the name of the new column and select a function to apply from a
drop-down list. Because we have only one custom function defined, there is only one choice.
Once you make a selection, the Calendar Year column will be chosen automatically. If needed,
this can be overridden by either selecting a different column from the drop-down list, or a
static number can be specified by choosing Decimal Number to the left of the drop-down
list. Clicking OK creates a new column and a new query step. As before, this step should be
removed.

Conditional Column
The Conditional Column dialog box allows you to create a column based on specified rules in
“if[nd]then[nd]else” fashion. For example, if Calendar Year is greater than 2014, the output can
be “After 2014,” otherwise “Before 2015.” We will review this option in more detail later in the
chapter.

Index ColumnPower Query also allows you to add an index column to your tables. There are
three options when you select Add Column > General > Index Column:

 ■ From 0

 ■ From 1

 ■ Custom

The first two options add a column starting from either 0 or 1 and incrementing by 1 with
each row. If you select Custom, you can specify your own starting index and increment in the
Add Index Column dialog box. This feature can be useful when you need to track the order of
events: once you load your data, the row order is not guaranteed, and you can refer to an index
column in this case.

Another way you can add a new column is by duplicating an existing column. For instance, if
you plan to modify some values in a column but still need the old ones to be present, you can
duplicate a column.

Note that there are many other buttons in the Add Column tab, and all of them are also
present in the Transform tab. The buttons in the Transform tab modify values and keep the
number of columns as-is, while their Add Column counterparts add new columns with modi-
fied values. These buttons are categorized into three groups: Text, Number, and Date/Time
functions. With them, you can perform transformations on values either in existing columns
(Transform tab) or add new columns based on existing ones (Add Column tab). For ex-
ample, you can extract the first three characters from a text string, extract month name from
a datetime value, or round a decimal number to one decimal number. It is worth reviewing the
functionality on your own.

From the Library of zhanl mamykova

ptg999

 Apply business rules CHAPTER 1 63

MORE INFO COMMON QUERY TASKS

For more examples on combining data, performing transformations, and using formulas,
see “Common query tasks in Power BI Desktop” at https://powerbi.microsoft.com/en-us/
documentation/powerbi-desktop-common-query-tasks/.

Apply business rules

With conditional columns mentioned in the previous section, you can apply business rules to your
data. For example, let’s assume that the management of Wide World Importers is interested in
viewing data for the contiguous United States and non-contiguous states separately. Furthermore,
we would like to exclude unknown cities. We can create a conditional column based on the State
Province column from the City table, and we can use the new column in our reports later.

Select Add Column > General > Conditional Column and type CONUS in the new col-
umn name field. Because we want to exclude Alaska, Hawaii, Puerto Rico (U.S. Territory), Virgin
Islands (U.S. Territory), and N/A, we need to create a column that contains 1 for all states except
the ones mentioned previously. The rules can be defined as follows:

 ■ If State Province equals “Alaska” then 0

 ■ Else If State Province equals “Hawaii” then 0

 ■ Else If State Province equals “Puerto Rico (US Territory)” then 0

 ■ Else If State Province equals “Virgin Islands (US Territory)” then 0

 ■ Else If State Province equals “N/A” then 0

 ■ Otherwise 1

The Conditional Column window should look like Figure 1-32.

FIGURE 1-32 Add Conditional Column window

After we click OK, we need to apply the Whole Number data type to the column.

From the Library of zhanl mamykova

https://powerbi.microsoft.com/en-us/documentation/powerbi-desktop-common-query-tasks/
https://powerbi.microsoft.com/en-us/documentation/powerbi-desktop-common-query-tasks/

ptg999

 64 CHAPTER 1 Consuming and transforming data by using Power BI Desktop

Change data format to support visualization
Power BI works best with tabular data when each metric is in its own column. Occasionally you
might get heavily pivoted data, which requires complex transformations to make visualization
easier. In the following example, we will be working with sample data from ChangeFormat.xlsx.
The file can be found in this book’s companion files.

The file contains a data array with three levels of headers: metric, year, and month. In addi-
tion to that, there are two attributes: Sales Territory and State Province. There are two met-
rics—Sales Amount and Tax Rate—and the two are in different scales. Tax Rate is a percentage,
while Sales Amount is in dollars. This format makes analysis and visualization very difficult. For
Power BI, the following columns would be preferable: Date, Sales Territory, Sales Province, Sales
Amount, and Tax Rate.

We can start by connecting to the Excel file. There is only one sheet with no ranges format-
ted as tables or named ranges. Once we select the sheet, we can click OK and then disable the
load of the query, because we will not need it in our data model. We can rename the query to
ChangingFormatReview. Because the automatic Changed Type step does not add any value,
we can remove it in this case. In this example, we are going to take a similar approach we took
with 2015–2016 targets earlier in this section.

Note that we need to fill the nulls for both headers and attribute columns. First, while hold-
ing the Ctrl key, we can select the two left-most columns, Column1 and Column2. Right-click
the header of either of them and select Fill > Down. Next, click Transform > Table > Trans-
pose and fill down the first three columns. Because unpivoting data at this stage is not going
to help us, we need to merge the first three columns. We will need to split them later, so we
should use a custom separator that cannot be found in data. In this case, I recommend using
the rarely used caret character: .̂ We can leave the name as is—Merged. Once this is done, we
need to transpose our table again and click Transform > Table > Use First Row As Headers.
The Changed Type step can be removed once again.

Now that we have headers, we can select the first two columns and unpivot all other col-
umns. The third column, Attribute, should be split back into three, by the caret custom delim-
iter. After splitting the column, we should remove the Changed Type yet again.

At this stage, we can note that the two metrics that we have, Sales Amount and Tax Rate, are
both contained within the same column, Value. The two metrics should be separated into two
columns. This can be achieved by pivoting the Attribute.1 column. Select the column and click
Transform > Any Column > Pivot Column. In the Pivot Column window, we need to select
the Values column first, which, in our case, is the Value column. Also, in Advanced Options,
we should select Don’t Aggregate As The Aggregate Value Function. The settings window
should look like Figure 1-33.

From the Library of zhanl mamykova

ptg999

 Apply business rules CHAPTER 1 65

FIGURE 1-33 Pivot Column dialog box

MORE INFO PIVOTING AND UNPIVOTING DATA IN POWER QUERY

For more examples of using the Pivot and Unpivot functions in Power Query, you can read a
blog post by Reza Rad at http://radacad.com/pivot-and-unpivot-with-power-bi.

The values in the Sales Amount column have a “k” suffix, meaning they are in thousands.
This should be addressed by replacing the “k” symbol with nothing by right-clicking anywhere
on the column and selecting Replace Values. We can type k without quotation marks in Value
To Find and click OK. We will multiply the values by 1,000 later.

The next step is to merge the Year and Month values into a Date column. This can be
achieved by merging the Attribute.2 and Attribute.3 columns into a new column called Date
with a dash as a custom separator. In this case, the order in which you select columns is not
important because Power Query will be able to parse dates either way. This creates a column of
type text. We should transform column names and data types according to Table 1-4.

TABLE 1-4 Column names and data types

Old Name New Name Data Type

Sales Territory^Sales
Territory^Sales Territory

Sales Territory Text

State Province^State
Province^State Province

State Province Text

Date Date Date

Sales Amount Sales Amount Fixed Decimal Number

Tax Rate Tax Rate Percentage

From the Library of zhanl mamykova

http://radacad.com/pivot-and-unpivot-with-power-bi

ptg999

 66 CHAPTER 1 Consuming and transforming data by using Power BI Desktop

Now that the Sales Amount column is of numeric type, multiply it by 1,000 by selecting it,
clicking Transform > Number Column> Standard > Multiply, and entering 1,000 as Value.
Finally, we can rearrange the columns by right-clicking on the header of the Date column and
selecting Move > To Beginning. If you open Advanced Editor, you should see code similar to
Listing 1-9.

LISTING 1-9 Full M code of the ChangingFormatReview query

let
 Source = Excel.Workbook(File.Contents("C:\Companion\ChangeFormat.xlsx"), null,
 true),
 SalesExport_Sheet = Source{[Item="SalesExport",Kind="Sheet"]}[Data],
 #"Filled Down" = Table.FillDown(SalesExport_Sheet,{"Column1", "Column2"}),
 #"Transposed Table" = Table.Transpose(#"Filled Down"),
 #"Filled Down1" = Table.FillDown(#"Transposed Table",{"Column1", "Column2",
 "Column3"}),
 #"Merged Columns" = Table.CombineColumns(Table.TransformColumnTypes(#"Filled Down1",
 {{"Column2", type text}, {"Column3", type text}}, "en-AU"),{"Column1", "Column2",
 "Column3"},Combiner.CombineTextByDelimiter("^", QuoteStyle.None),"Merged"),
 #"Transposed Table1" = Table.Transpose(#"Merged Columns"),
 #"Promoted Headers" = Table.PromoteHeaders(#"Transposed Table1",
 [PromoteAllScalars=true]),
 #"Unpivoted Other Columns" = Table.UnpivotOtherColumns(#"Promoted Headers", {"Sales
 Territory^Sales Territory^Sales Territory", "State Province^State Province^State
 Province"}, "Attribute", "Value"),
 #"Split Column by Delimiter" = Table.SplitColumn(#"Unpivoted Other Columns",
 "Attribute", Splitter.SplitTextByDelimiter("^", QuoteStyle.Csv), {"Attribute.1",
 "Attribute.2", "Attribute.3"}),
 #"Pivoted Column" = Table.Pivot(#"Split Column by Delimiter", List.Distinct(#"Split
 Column by Delimiter"[Attribute.1]), "Attribute.1", "Value"),
 #"Replaced Value" = Table.ReplaceValue(#"Pivoted
 Column","k","",Replacer.ReplaceText,{"Sales Amount"}),
 #"Merged Columns1" = Table.CombineColumns(#"Replaced Value",{"Attribute.3",
 "Attribute.2"},Combiner.CombineTextByDelimiter("-", QuoteStyle.None),"Date"),
 #"Renamed Columns" = Table.RenameColumns(#"Merged Columns1",{{"Sales Territory^Sales
 Territory^Sales Territory", "Sales Territory"}, {"State Province^State Province^State
 Province", "State Province"}}),
 #"Changed Type" = Table.TransformColumnTypes(#"Renamed Columns",{{"Sales Territory",
 type text}, {"State Province", type text}, {"Date", type date}, {"Sales Amount",
 Currency.Type}, {"Tax Rate", Percentage.Type}}),
 #"Multiplied Column" = Table.TransformColumns(#"Changed Type", {{"Sales Amount",
 each _ * 1000, Currency.Type}}),
 #"Reordered Columns" = Table.ReorderColumns(#"Multiplied Column",{"Date", "Sales
 Territory", "State Province", "Sales Amount", "Tax Rate"})
in
 #"Reordered Columns"

From the Library of zhanl mamykova

ptg999

 Apply business rules CHAPTER 1 67

MORE INFO CLEANING IRREGULARLY FORMATTED DATA

For more examples on how to change data format to support visualization, see the “Clean-
ing Irregularly Formatted Data” page on Power BI Guided Learning at https://powerbi.micro-
soft.com/en-us/guided-learning/powerbi-learning-1-5-cleaning-irregular-data/.

Working with query parameters
In Power Query, a parameter is a query that returns a single value, which may have a speci-
fied data type. Parameters can be useful in many scenarios. For example, you can filter data in
tables by parameter; changing the parameter value will change the data a table returns. We are
going to review the usage of parameters by following an example.

One of the ways to create a parameter is by clicking Home > Parameters > Manage
Parameters > New Parameter. Alternatively, right-click on a blank space in the Queries
pane and select New Parameter. This will open the Parameters window, where you will need
to specify settings for the new parameter. If we had some parameters already, they would be
displayed on the left.

With our parameter, we are going to filter both Date and Sale tables by a starting date.
Therefore, we can call the new parameter StartDate. The Description field is optional, and we
should leave the Required check box enabled because filtering dates by a null value is not
going to work. In the Type drop-down list, we should select Date. In the Suggested Values,
there are three options:

 ■ Any value: Lets Let’s you enter any value.

 ■ List of values: Lets Let’s you pre-define a list of parameter values, which later trans-
lates into a drop-down list, from which you can select a value. You will need to define
both the default and current values. The default value is used when you export your
Power BI Desktop file as a Power BI template.

 ■ Query Lets you reference a query that returns a list, from which you can later pick a
parameter value; specifying the current value is also required. In our case, we can keep
the default option, Any Value, selected and enter 1/1/2014 as the current value, then
click OK. We can now see our parameter in the Queries pane with an icon different from
other queries.

To use a parameter, go to the Date query, click the drop-down arrow in the header of the
Date column and select Date Filters > Custom Filter. We need to specify one rule: “is after
or equal to” and click on the calendar icon to the right. In the drop-down list, we can pick
between a date value (currently selected), a parameter, or creation of a new parameter. Select
Parameter, and then the StartDate parameter will be automatically selected. Clicking OK will
filter the table. Note that Query Folding takes place: if you right-click on the Filtered Rows
step and select View Native Query, you will see the native query in Listing 1-10, with the filter-
ing translated natively into the WHERE statement, highlighted in bold below.

From the Library of zhanl mamykova

https://powerbi.micro-soft.com/en-us/guided-learning/powerbi-learning-1-5-cleaning-irregular-data/
https://powerbi.micro-soft.com/en-us/guided-learning/powerbi-learning-1-5-cleaning-irregular-data/

ptg999

 68 CHAPTER 1 Consuming and transforming data by using Power BI Desktop

LISTING 1-10 Date native query

select [_].[Date],
 [_].[Day Number],
 [_].[Day],
 [_].[Month],
 [_].[Short Month],
 [_].[Calendar Month Number],
 [_].[Calendar Month Label],
 [_].[Calendar Year],
 [_].[Calendar Year Label],
 [_].[Fiscal Month Number],
 [_].[Fiscal Month Label],
 [_].[Fiscal Year],
 [_].[Fiscal Year Label],
 [_].[ISO Week Number]
from [Dimension].[Date] as [_]
where [_].[Date] >= convert(datetime2, '2014-01-01 00:00:00')

We can now apply the same filter to the Sale query; we should apply the same filter to the
Invoice Date Key column. Just as in case of the Date query, the filtering is correctly translated
into a native query, even though the query itself is referencing the SaleInitial query. The native
query can be seen in Listing 1-11.

LISTING 1-11 Sale native query

select [_].[City Key],
 [_].[Customer Key],
 [_].[Bill To Customer Key],
 [_].[Stock Item Key],
 [_].[Invoice Date Key],
 [_].[Delivery Date Key],
 [_].[Salesperson Key],
 [_].[WWI Invoice ID],
 [_].[Quantity],
 [_].[Unit Price],
 [_].[Tax Rate],
 [_].[Total Excluding Tax],
 [_].[Tax Amount],
 [_].[Profit],
 [_].[Total Including Tax]
from
(
 select [City Key],
 [Customer Key],
 [Bill To Customer Key],
 [Stock Item Key],
 [Invoice Date Key],
 [Delivery Date Key],
 [Salesperson Key],
 [WWI Invoice ID],
 [Quantity],
 [Unit Price],

From the Library of zhanl mamykova

ptg999

 Apply business rules CHAPTER 1 69

 [Tax Rate],
 [Total Excluding Tax],
 [Tax Amount],
 [Profit],
 [Total Including Tax]
 from [Fact].[Sale] as [$Table]
) as [_]
where [_].[Invoice Date Key] >= convert(datetime2, '2014-01-01 00:00:00')

We can edit the StartDate parameter by selecting it and by clicking Manage Parameter.
Changing the year from 2014 to 2015 changes the native queries in both Date and Sale queries.
Listing 1-12 shows fragments of both.

LISTING 1-12 Fragments of Date and Sale queries
// Fragment of Date query

select [_].[Date],
 . . .
from [Dimension].[Date] as [_]
where [_].[Date] >= convert(datetime2, '2015-01-01 00:00:00')

// Fragment of Sale query

select [_].[City Key],
 . . .
 from [Fact].[Sale] as [$Table]
) as [_]
where [_].[Invoice Date Key] >= convert(datetime2, '2015-01-01 00:00:00')

Note that we only had to change the parameter once to update both queries. There are
other scenarios in which parameters can be useful.

MORE INFO POWER BI DESKTOP QUERY PARAMETERS

For more examples and use cases of query parameters in Power BI Desktop, you can refer to
a series of blog posts by Soheil Bakhshi:

 ■ http://biinsight.com/power-bi-desktop-query-parameters-part-1/

 ■ http://biinsight.com/power-bi-desktop-query-parameters-part2-dynamic-data-mask-
ing-and-query-parameters/

 ■ http://biinsight.com/power-bi-desktop-query-parameters-part-3-list-output/

Creating custom functions
Apart from coding custom functions in M, you can create custom functions using parameters.
For example, let’s duplicate the Date query. This creates a query called Date (2). We should
disable its load, move it to the Other Queries group and rename it to FilteredDate. Right-click
the FilteredDate query and select Create Function. In the Create Function dialog box, enter
fDate in the Function Name field and click OK. This creates a new query group called fDate,
which consists of the FilteredDate query and the fDate custom function.

From the Library of zhanl mamykova

http://biinsight.com/power-bi-desktop-query-parameters-part-1/
http://biinsight.com/power-bi-desktop-query-parameters-part2-dynamic-data-mask-ing-and-query-parameters/
http://biinsight.com/power-bi-desktop-query-parameters-part2-dynamic-data-mask-ing-and-query-parameters/
http://biinsight.com/power-bi-desktop-query-parameters-part-3-list-output/

ptg999

 70 CHAPTER 1 Consuming and transforming data by using Power BI Desktop

You can test how the fDate function works by selecting it and entering 2016 as the Start-
Date parameter; Power Query will interpret it as 1 January 2016. Note that you are no longer
tied to the value of the StartDate parameter we defined earlier. The parameter in the fDate
function only shares the name, but it can be of any value. After you click Invoke, a new query
called Invoked Function is created, which returns the Date table filtered to dates after 1 Janu-
ary 2016. This time, however, the filtering is not translated into a native query. The View Native
Query selection is disabled.

If you attempt to edit the fDate function directly, either in the Advanced Editor or the For-
mula Bar, you will get the message seen in Figure 1-34.

FIGURE 1-34 Edit Function dialog box

What this message means is that if you want to modify the function, you should modify the
FilteredDate query instead, because all of the changes will be translated to the fDate function.
Indeed, if we go to FilteredDate, select the Date column and remove all other columns, then
go to the Invoked Function query, we will see that it has only one column, even though we
did not modify either it or the fDate function directly.

MORE INFO CUSTOM FUNCTIONS IN POWER BI

Custom functions are particularly useful when you need to apply the same transformation
multiple times. By encapsulating your transformation steps into a single query, you make
your code easier to maintain. For more information on custom functions in Power BI, you
can refer to Reza Rad’s blog entry, “Custom Functions Made Easy in Power BI Desktop” at
http://radacad.com/custom-functions-made-easy-in-power-bi-desktop.

From the Library of zhanl mamykova

http://radacad.com/custom-functions-made-easy-in-power-bi-desktop

ptg999

 Apply business rules CHAPTER 1 71

Privacy levels
When you combine data from different data sources, it is important to set the privacy levels
correctly. Privacy levels determine the rules according to which data will be combined. These
rules may affect the performance of queries, and in some cases, queries will not be executed at
all if it is not permitted by privacy levels. To illustrate what happens in an example, we are go-
ing to filter the Customer table by a parameter value from the Target table.

First, right-click on the Target table and select Reference. This will create a new query
in the Targets queries group, called Target (2). Rename the query to DistinctCustomer and
disable its loading. Next, right-click on the header of the Bill To Customer column and select
Drill Down. This will turn the column into a list. Finally, we want to keep distinct values only,
which can be accomplished by clicking List Tools > Transform > Manage Items > Remove
Duplicates. The full query code should be the same as shown in Listing 1-13.

LISTING 1-13 DistinctCustomer query code

let
 Source = Target,
 #"Bill To Customer" = Source[Bill To Customer],
 #"Removed Duplicates" = List.Distinct(#"Bill To Customer")
in
 #"Removed Duplicates"

Second, click Home > Parameters > Manage Parameters > New Parameter. The new
parameter should be called CustomerParameter, and its type should be Text. Select Query
for Suggested Values and then select the DistinctCustomer query from the drop-down list.
Type N/A in the Current Value field.

We can now use this parameter to filter the Customer table: go to the Customer table and
click on the AutoFilter (arrow) button in the Bill To Customer header, then select Text Filters
> Equals in the Filter Rows dialog box, click on the top ABC drop-down list and select Param-
eter (CustomerParameter should be selected automatically). After clicking OK, a message
will prompt you to set privacy levels, as shown in Figure 1-35.

FIGURE 1-35 Data privacy prompt

If you do not see the prompt from Figure 1-35, it means you have already combined data
from your drive and your SQL Server; the permissions you set can be cleared in Home > Data
Sources > Data Source Settings. You will see a list of data sources used in the current file; to
clear the permissions, below the list, click on the arrow next to Clear Permissions and select
Clear All Permissions, then confirm by selecting Delete in the Clear All Permissions dialog
box.

From the Library of zhanl mamykova

ptg999

 72 CHAPTER 1 Consuming and transforming data by using Power BI Desktop

When we click Continue in the data privacy prompt from Figure 1-35, we open the Privacy
Levels dialog box, where we are prompted to select privacy levels. The dialog box can be seen
in Figure 1-36.

FIGURE 1-36 Privacy Levels dialog box

You can notice in Figure 1-36 that we have the C: drive repeated three times, though you
can select the privacy level only once. This is because each drop-down list corresponds to
a specific data source. For example, expanding the localhost drop-down list, shows both
localhost and localhost;WideWorldImportersDW as options. This means that you can
set the privacy level either to a specific data source (WideWorldImportersDW database, for
instance), or any level above it (such as the whole localhost SQL Server). Because the Target
query is composed of three files—Target.txt, Target20152016.xlsx, and TargetQuantity.txt—we
can pick privacy levels for each file individually, or specify a common privacy level for any level
above, such as for the whole C: drive.

In the drop-down lists on the right, you can select the following privacy levels:

 ■ Public This option should be used for publicly accessible sources, such as Wikipedia
pages.

 ■ Organizational This can be used for data sources accessible to others within your
network, such as a corporate database. This privacy level is isolated from the Public data
sources, but it is visible to other Organizational data sources.

 ■ Private Should be used for confidential or sensitive information, such as payroll infor-
mation. This privacy level is completely isolated from all data sources, including other
data sources marked as Private.

For now, select Organizational for both localhost and C: drive. If you previously cleared
data source settings, you might need to specify credentials for your database.

At this stage, you will see the Customer table filtered to one row. The full M query can be
seen in Listing 1-14.

From the Library of zhanl mamykova

ptg999

 Apply business rules CHAPTER 1 73

LISTING 1-14 Filtered Customer M query

let
 Source = Sql.Databases("localhost"),
 WideWorldImportersDW = Source{[Name="WideWorldImportersDW"]}[Data],
 Dimension_Customer = WideWorldImportersDW{[Schema="Dimension",Item="Customer"]}
[Data],
 #"Filtered Rows" = Table.SelectRows(Dimension_Customer, each [Bill To Customer]
 = CustomerParameter)
in
 #"Filtered Rows"

The corresponding native query can be seen in Listing 1-15.

LISTING 1-15 Filtered Customer native query

select [_].[Customer Key],
 [_].[WWI Customer ID],
 [_].[Customer],
 [_].[Bill To Customer],
 [_].[Category],
 [_].[Buying Group],
 [_].[Primary Contact],
 [_].[Postal Code],
 [_].[Valid From],
 [_].[Valid To],
 [_].[Lineage Key]
from [Dimension].[Customer] as [_]
where [_].[Bill To Customer] = 'N/A'

Note that in the native query, filtering is translated with the WHERE clause. This is made
possible because both data sources are marked with the Organizational privacy level.

We can now review what happens when we change the privacy level of one of the data
sources to Private. First, click Home > Data Sources > Data Source Settings, then select
Target.txt and click Edit Permissions. In the Edit Permissions dialog box, you will see None
selected. This means that for this data source specifically, no privacy level has been selected.
Therefore, it inherits its privacy level from the parent directory, which, in our case is drive C:
with Organizational privacy level. Select Private in the drop-down list and click OK, then Close.

After you click Home > Query > Refresh Preview, you will see that the query still executes,
but at step Filtered Rows, no query folding takes place. Instead, query folding instead ends at
the previous step, Navigation. What this means is that no data from the Target table is sent to
SQL Server; instead, the whole Customer table is downloaded from the server, then filtering is
done inside Power Query. As a result, performance is degraded, but data is not leaked outside
of Power Query. Even if a database administrator would run a Profiler trace, he or she would
not be able to check which values are contained in our files.

While this is an artificial example, it illustrates how privacy levels work. If you are confident
that privacy is not an issue with our data, you can disable privacy settings in File > Options
and Settings > Options. You can set privacy settings either globally—for every file—or for
this file only in the Global and Current File sections, respectively.

From the Library of zhanl mamykova

ptg999

 74 CHAPTER 1 Consuming and transforming data by using Power BI Desktop

MORE INFO PRIVACY LEVELS IN POWER BI DESKTOP

For a general overview of privacy levels, see “Power BI Desktop privacy levels” at https://
powerbi.microsoft.com/en-us/documentation/powerbi-desktop-privacy-levels/. Additionally,
Chris Webb has written a series of detailed blog posts on privacy levels:

 ■ “Data Privacy Settings In Power BI/Power Query, Part 1: Performance Implications”
at https://blog.crossjoin.co.uk/2017/05/24/data-privacy-settings-in-power-bipower-
query-part-1-performance-implications/.

 ■ “Data Privacy Settings In Power BI/Power Query, Part 2: Preventing Query Execution”
at https://blog.crossjoin.co.uk/2017/05/31/data-privacy-settings-in-power-bipower-
query-part-2-preventing-query-execution/.

 ■ “Data Privacy Settings In Power BI/Power Query, Part 3: The Formula.Firewall Error”
at https://blog.crossjoin.co.uk/2017/06/26/data-privacy-settings-in-power-bipower-
query-part-3-the-formula-firewall-error/.

 ■ “Data Privacy Settings In Power BI/Power Query, Part 4: Disabling Data Privacy
Checks” at https://blog.crossjoin.co.uk/2017/07/04/data-privacy-settings-in-power-
bipower-query-part-4-disabling-data-privacy-checks/.

 ■ “Data Privacy Settings In Power BI/Power Query, Part 5: The Inheritance Of Data
Privacy Settings And The None Data Privacy Level” at https://blog.crossjoin.
co.uk/2017/07/10/data-privacy-settings-in-power-bipower-query-part-5-the-inheri-
tance-of-data-privacy-settings-and-the-none-data-privacy-level/,

Skill 1.3: Cleanse data

Occasionally, you may need to cleanse the data you are using, unless you are using a data
source where data quality is managed by someone. In this chapter, we have briefly covered
various techniques with which you can clean your data, and in this section, we are going to
review more of them.

This section covers how to:
 ■ Manage incomplete data

 ■ Meet data quality requirements

Manage incomplete data
Earlier in this chapter, we reviewed the Fill Down feature of Power Query. It has a Fill Up coun-
terpart as well: Note that the feature works only on null values, not blank ones, or zero-length
strings.

From the Library of zhanl mamykova

https://powerbi.microsoft.com/en-us/documentation/powerbi-desktop-privacy-levels/
https://powerbi.microsoft.com/en-us/documentation/powerbi-desktop-privacy-levels/
https://blog.crossjoin.co.uk/2017/05/24/data-privacy-settings-in-power-bipower-query-part-1-performance-implications/
https://blog.crossjoin.co.uk/2017/05/24/data-privacy-settings-in-power-bipower-query-part-1-performance-implications/
https://blog.crossjoin.co.uk/2017/05/31/data-privacy-settings-in-power-bipower-query-part-2-preventing-query-execution/
https://blog.crossjoin.co.uk/2017/05/31/data-privacy-settings-in-power-bipower-query-part-2-preventing-query-execution/
https://blog.crossjoin.co.uk/2017/06/26/data-privacy-settings-in-power-bipower-query-part-3-the-formula-firewall-error/
https://blog.crossjoin.co.uk/2017/06/26/data-privacy-settings-in-power-bipower-query-part-3-the-formula-firewall-error/
https://blog.crossjoin.co.uk/2017/07/04/data-privacy-settings-in-power-bipower-query-part-4-disabling-data-privacy-checks/
https://blog.crossjoin.co.uk/2017/07/04/data-privacy-settings-in-power-bipower-query-part-4-disabling-data-privacy-checks/
https://blog.crossjoin.co.uk/2017/07/10/data-privacy-settings-in-power-bipower-query-part-5-the-inheri-tance-of-data-privacy-settings-and-the-none-data-privacy-level/
https://blog.crossjoin.co.uk/2017/07/10/data-privacy-settings-in-power-bipower-query-part-5-the-inheri-tance-of-data-privacy-settings-and-the-none-data-privacy-level/
https://blog.crossjoin.co.uk/2017/07/10/data-privacy-settings-in-power-bipower-query-part-5-the-inheri-tance-of-data-privacy-settings-and-the-none-data-privacy-level/

ptg999

 Skill 1.3: Cleanse data CHAPTER 1 75

There are other ways in which you can add missing values to your data. For instance, you
may choose to replace nulls with a column average rather than values from above or below. To
review the process, start by connecting to ReplaceWithAverage.csv from this book’s compan-
ion files. Keep the connection settings as is and click OK. You can see that there are several val-
ues missing. To replace nulls with an average, calculate the average first. To do this, right-click
on the Average Price column and then select Add as New Query. This creates a new query
with the column transformed into a list. Note that the icon of this query is different now. Lists
are not tables; you can see that the Transform and Add Column tabs are inactive. However,
there is a new Transform tab that is designated as List Tools, and it allows you to convert
this list into a table. Apart from that, you also have an option to keep top, bottom, or range
of items; remove top, bottom, or alternate items; remove duplicates and reverse the order of
the items; sort; or perform statistical aggregations on the items. In this case, we want to select
Statistics > Average. This transforms the query into a scalar value, as can be seen from its 123
icon. This value can now be used to replace nulls with it.

We can go back to the ReplaceWithAverage query and add a Custom Column, which
should have the formula from Listing 1-16.

LISTING 1-16 Custom column formula to replace nulls with pre-calculated averages

=if [Average Price] is null then #"Average Price" else [Average Price]

A similar technique—checking if a column value is null—can be useful when dealing with
nested tables, as some hierarchy levels often contain nulls instead of values.

In M, you refer to columns by enclosing them in square brackets; it does not matter if there
are any spaces or not. You can refer to queries, including formulas and parameters, by refer-
encing their names directly—unless there are special characters in the names, such as spaces.
In this case, you need to enclose the name in double quotation marks and add a hash (#) prefix.
So, the formula, translated into English, reads: “If the Average Price column is null, then use the
Average Price query, otherwise keep the value from Average Price column.”

Meet data quality requirements
Power Query has features that can help you with handling errors, duplicate values, and unde-
sirable characters. Errors can be filtered out, replaced, or otherwise dealt with, depending on
the objective.

Handling error values
Connect to Target.txt again by selecting Home > Recent Sources > Target.txt, and we can
accept the default settings. This creates a query called Target (2), which we should rename
to ErrorHandling. First, we should promote headers, which creates another step, Changed
Type1. To generate an error, we can change the type of the CalendarYear column to Whole
Number. We will then see the Change Column Type dialog box from Figure 1-37.

From the Library of zhanl mamykova

ptg999

 76 CHAPTER 1 Consuming and transforming data by using Power BI Desktop

FIGURE 1-37 Change Column Type dialog box

In our case, we can select Replace Current. Note that row 13 now has an error, because
Power Query tried to convert *To be confirmed into a number. There are at least three ways
to deal with the error.

First, you can right-click on the ColumnYear header and select Remove Errors. Alterna-
tively, you can select the column and then click Transform > Reduce Rows > Remove Rows
> Remove Errors. This will remove the row completely. Because there is only one error in the
whole row, you can achieve the same effect by clicking the table icon above row numbers and
select Remove Errors. This removes all rows where at least one column contains an error.

Second, after right-clicking on the header, you can select Replace Errors. In the Replace
Errors dialog box, you will be able to specify a replacement value. For instance, you can type
“null” without quotation marks, and this will replace errors with nulls. This procedure will keep
the row but replace the error with a value of your choice.

Third, you can create a custom column that checks whether there is an error in the column.
For this, you will need to use the “try otherwise” construct. Select Add Column > General >
Custom Column and type the formula from Listing 1-17.

LISTING 1-17 Custom column formula that handles errors

=try [CalendarYear] otherwise null

This formula checks whether the value in the CalendarYear column is an error, and if it is,
then it returns a null value; if the CalendarYear value is not an error, then this value is returned.

Removing extra spaces and non-printable characters
If you have extra spaces in your text strings, Power Query can trim them with a Trim trans-
formation. To trim spaces in a column, right-click its header and select Transform > Trim.
Alternatively, you can select a column and click Transform > Text Column > Format > Trim.
The function removes all spaces from both sides of the string.

If you are using a SQL database as a data source, the function does not break Query Folding.
For example, if we trim spaces in the Employee column from Employee table, it will be trans-
lated as shown in Listing 1-18.

From the Library of zhanl mamykova

ptg999

 Thought experiment CHAPTER 1 77

LISTING 1-18 Fragment of a query with Trim translated to SQL

select [_].[Employee Key] as [Employee Key],
 [_].[WWI Employee ID] as [WWI Employee ID],
 ltrim(rtrim([_].[Employee])) as [Employee],
 [_].[Preferred Name] as [Preferred Name],
 [_].[Is Salesperson] as [Is Salesperson],
 [_].[Photo] as [Photo],
 [_].[Valid From] as [Valid From],
 [_].[Valid To] as [Valid To],
 [_].[Lineage Key] as [Lineage Key]
from [Dimension].[Employee] as [_]

If you need to remove non-printable characters from a column, you can select Transform >
Clean. Note that this function prevents Query Folding, so it is best to do it after all transforma-
tions that support Query Folding.

EXAM TIP

The exam does not test your knowledge on advanced M syntax, but you should be famil-
iar with functions that are generated when working with the user interface. Every step’s
formula can be seen in Formula Bar when a step is selected. For a general overview of func-
tions, see “Understanding Power Query M functions” at https://msdn.microsoft.com/en-us/
library/mt185361.aspx.

For the complete function reference, see “Power Query M function reference” at https://
msdn.microsoft.com/en-us/library/mt779182.aspx.

Thought experiment

In this thought experiment, demonstrate your skills and knowledge of the topics covered in this
chapter. You can find the answer to this thought experiment in the next section.

You are the BI developer at Contoso responsible for creating Power BI reports. The current
database environment includes an on-premise SQL Server 2017 OLTP system and Azure SQL
Data Warehouse that contains all historical data since 1990 and synchronizes with the OLTP
system every five minutes. Azure SQL Data Warehouse contains over 500 GB of data.

Additionally, every month, the Sales Planning department produces Excel files with sales
targets for each customer and product category. These files are produced by planning
software that always uses the same format. A sample file is shown in Figure 1-38. The files are
stored in a folder on a network drive to which you have been granted access.

From the Library of zhanl mamykova

https://msdn.microsoft.com/en-us/library/mt185361.aspx
https://msdn.microsoft.com/en-us/library/mt185361.aspx
https://msdn.microsoft.com/en-us/library/mt779182.aspx
https://msdn.microsoft.com/en-us/library/mt779182.aspx

ptg999

 78 CHAPTER 1 Consuming and transforming data by using Power BI Desktop

FIGURE 1-38 Sample sales targets file, 2018 May.xlsx

The management requested two Power BI reports to be produced: one that shows all his-
torical data, including transactions that happened in the past 10 minutes, and another report
that tracks sales targets versus actual figures for the past 12 months.

Based on background information and business requirements, answer the following ques-
tions:

1. Which data connectivity mode should you use for each report?

A. DirectQuery for both

B. Import data for both

C. DirectQuery for the historical data report, Import data for the sales targets report

D. DirectQuery for the sales targets report, Import data for the historical data report

2. How do you connect to Excel files that contain target figures? The solution should in-
volve minimum manual work when new Excel files are created.

A. Connect to the files with Folder connector and use the Combine Binaries functional-
ity

B. Connect to a new file each month, perform transformations, and use the Append
function in Power Query Editor to combine all targets in the same table

3. After connecting to all the target Excel files, which of the following is going to transform
data into a tabular shape that Power BI works best with?

A. Select first column, then click Pivot Column

B. Select first column, then Unpivot Other Columns

C. Select first column, then Unpivot

D. Transpose table

4. You need to filter out totals from target figures. Which function does that?

A. Table.Filter

B. CALCULATETABLE

C. Table.SelectRows

D. Table.FilterRows

From the Library of zhanl mamykova

ptg999

 Chapter summary CHAPTER 1 79

5. After transforming the targets table, you have selected Fixed Decimal Number for the
target figures column. Now there is one error in the column. Which of the following is
NOT going to remove it in any way?

A. Right-click on the header of the column and select Remove Errors

B. Right-click on the header of the column, select Replace Errors, specify null

C. Click Home > Remove Rows > Remove Errors.

D. Click on the AutoFilter button of the column and de-select the error

Thought experiment answers

1. The answer is C. For the historical data report; you need to select the DirectQuery con-
nectivity mode because the report needs to show the latest data, as well as all the avail-
able historical data, which is too large to fit into memory. Azure SQL Data Warehouse
supports DirectQuery, and other data sources are not required, making DirectQuery a
viable option. For the sales targets report, you need to combine actual data from Azure
SQL Data Warehouse with Excel files. Furthermore, you will need to do transformations
on Excel files, which leaves importing data as the only available option.

2. The answer is A. The Folder connector performs transformations on files that have the
same format automatically. You need to define the transformations only once; then you
can only refresh data when new files are created. This option is much less laborious than
connecting to each file individually and performing transformations every time.

3. The answer is B. Option A requires a values column to be selected, and there is more
than one—one for each product category. Option C will keep all the values columns in
place. Option D will put customers on columns and product categories on rows. Option
B will correctly transform the table into a table with three columns, which will contain
Customer, Product Category, and Target values.

4. The answer is C. Options A and D do not exist. Option B is a DAX function.

5. The answer is D. When you have an error in a column, it is not possible to filter it out us-
ing AutoFilter because the error does not show in the results. All other options will work.

Chapter summary
 ■ In most cases, the development of a Power BI Desktop report starts by creating a data

source, which can be a relational database, file, folder, Excel, web service, SQL Server
Analysis Services database, among many others. Power BI Desktop also supports ge-
neric data interfaces and custom data connectors, which makes the list of available data
sources virtually unlimited.

 ■ Many relational databases share the same steps that you take when you connect to
them: first, you specify a server and, in some cases, a database name. Power BI Desk-

From the Library of zhanl mamykova

ptg999

top will also import relationships between objects if they exist in the database and you
chose to include relationship columns in the initial settings dialog box. Next, you need
to specify authentication mode and credentials. You are then taken to the Navigator
window, where you select the objects you want to include in your data model. Some
data sources support objects other than tables and views. Once you have selected all
desired objects, you can either load data from the objects right away, or edit it in Power
Query Editor before loading.

 ■ Power BI Desktop performs best and allows you to use all of its features when you
import data. In some cases, it is not feasible—for example, when there is too much data
to import, or when data is updated very frequently, and business requirements demand
always showing the latest data. These issues can be addressed if the data source sup-
ports the DirectQuery connectivity mode. Some, but not all, databases support Direc-
tQuery. With DirectQuery, no data is imported into Power BI. Instead, all data remains
in the source, and every time Power BI needs to calculate values, it sends queries in data
source’s native query language. In some cases, you can apply certain types of transfor-
mations that can be translated to the native query language. There is a special case of
DirectQuery called Live Connection, which is available with SQL Server Analysis Services
(SSAS) and Power BI Service. If you are using either DirectQuery or Live Connection, you
can only use one data source. You can switch from DirectQuery to Import mode. How-
ever, switching from Live Connection to Import mode is currently not supported.

 ■ It is possible to either import files in Power BI Desktop individually or connect to a folder
that contains files, given that they share the same format. Currently, files of the following
types can be combined using Power Query Editor: Excel, Text/CSV, XML, and JSON. Be-
sides importing data from Excel files, you can also import its workbook contents, which
imports Power Query queries, Power Pivot data models, and Power View worksheets.
Not all Power View visuals are currently supported in Power BI Desktop, and unsup-
ported visuals result in error messages. The best way to migrate an existing Power Pivot
data model to Power BI Desktop is by importing it.

 ■ In addition to on-premise data sources, Power BI Desktop can connect to cloud data
services, such as Azure SQL Database and SharePoint Online. Furthermore, you can con-
nect to files and pages located on the Internet by using the Web Connector.

 ■ Power Query Editor uses a strongly typed, functional language called M, and it is rich in
features with which you can perform basic and advanced transformations. Each trans-
formation is recorded in a step, which can be reordered or deleted. The full query code
can be edited in the Advanced Editor. Query dependencies can be seen in the Query
Dependencies view.

 ■ The following are the most common tasks you can perform with Power Query Editor
user interface:

 ■ Filter data by reducing rows or columns

 ■ Aggregate data by grouping it

 ■ Combine data from different sources either by appending or merging tables

From the Library of zhanl mamykova

ptg999

 Chapter summary CHAPTER 1 81

 ■ Transpose, pivot and unpivot values

 ■ Use the first row as headers

 ■ Split columns

 ■ Create new columns from examples based on conditions by duplicating, applying a
function, using indexes, by transforming other columns, or with custom code

 ■ Set column data types

 ■ Replace values

 ■ Remove errors

 ■ Remove duplicates

 ■ Apart from tables, queries can also return lists, scalar values, and other data structures.
To avoid repeating the same code, you can leverage parameters that you can create
yourself. You can also create custom functions either by using parameters or by writing
your own M code.

 ■ Power Query can translate some transformations into the native language of data
source, resulting in improved performance. This is known as Query Folding, and you can
check if it takes place by right-clicking on a step and viewing the native query.

 ■ Every data source has its own privacy level, which can be one of the following: Private,
Organizational, Public, and None. Each Private data source is completely isolated from
all other data sources. Organizational data sources are visible to each other and are
isolated from Public data sources. By default, Power BI combines data from different
sources according to each; this behavior can be disabled in Power BI settings, though
privacy is not guaranteed in this case.

From the Library of zhanl mamykova

ptg999

From the Library of zhanl mamykova

ptg999

 83

C H A P T E R 2

Modeling and visualizing data
The previous chapter reviewed the skills necessary to connect to data sources and trans-

form data using Power Query Editor—the process also known as data shaping.

This chapter starts by covering data modeling skills. In Power BI, a data model is a collec-
tion of one or more tables connected by relationships. Apart from the M language, which is
used for data shaping, Power BI uses DAX, which is its native formula and query language.
Power BI possesses rich data modeling capabilities, which include creating relationships as
well as enriching a data model with hierarchies, measures, calculated columns, and calculated
tables.

Next, we review the data visualization skills: working with different types of charts and
shapes, managing interactions between visuals, and configuring pages layout. We also re-
view custom reporting solutions: configuring and accessing Power BI Embedded, using REST
API, as well as working with custom visualizations.

The skills required to work with Power BI service will be covered in Chapter 3, “Configure
dashboards, reports, and apps in the Power BI Service.”

Skills in this chapter:
 ■ Skill 2.1: Create and optimize data models

 ■ Skill 2.2: Create calculated columns, calculated tables, and measures

 ■ Skill 2.3: Measure performance by using KPIs, gauges, and cards

 ■ Skill 2.4: Create hierarchies

 ■ Skill 2.5: Create and format interactive visualizations

 ■ Skill 2.6: Manage custom reporting solutions

Skill 2.1: Create and optimize data models

Before you can create any visuals, you need to create your data model by loading data and
creating relationships. So far in Chapter 1, we have only created queries and performed trans-
formations. In this section, we start with loading data, and creating relationships between
tables and optimizing the data model for reporting.

From the Library of zhanl mamykova

ptg999

 84 CHAPTER 2 Modeling and visualizing data

This section covers how to:
 ■ Manage relationships

 ■ Optimize models for reporting

 ■ Manually type in data

 ■ Use Power Query

Manage relationships
In Chapter 1, we mostly worked in Power Query Editor. In this chapter, we work in the main
Power BI Desktop window, which can be seen in Figure 2-1.

FIGURE 2-1 The main Power BI Desktop window

This window can be divided into six parts, each labeled with a number:

1. Ribbons pane The Home, View, Modeling, and Help ribbons can be seen by default.
The File button is to the left of the Home ribbon. If needed, the Ribbons pane can be
collapsed by double-clicking on the name of the active ribbon.

2. View buttons By default, you can change the view between Report (top button), Data
(middle button), and Relationships (bottom button). The Data view will be unavailable
if you choose the DirectQuery data connectivity mode; both the Data and Relationship
views will be unavailable if you consume data with Live Connection.

3. Report canvas All visuals that you use will be placed on the canvas.

4. Visualizations pane By default, this pane contains the standard visuals that you can
use. Below the visuals, you can choose between the Fields and Format tabs. The Fields

From the Library of zhanl mamykova

ptg999

 Skill 2.1: Create and optimize data models CHAPTER 2 85

tab contains field wells and should not be confused with the Fields pane described next.
In the Format tab, you can format the report canvas or visuals and shapes when you
select them. This pane can be collapsed by clicking on the arrow at the top of it.

5. Fields pane All tables that you import will be shown here, with each column being a
field under each table. You can search for fields by typing in the Search area. The Fields
pane can be collapsed in the same manner as the Visualizations pane.

6. Page tabs You can rename, duplicate, delete, and create new pages here.

We will be reviewing the interface, including the options not seen by default, in more detail
in this chapter. As Power BI Desktop is updated every month, your interface might differ from
Figure 2-1.

In this chapter, we are going to continue using the Wide World Importers data in addition
to the data we added from text and Excel files in the previous chapter. If you followed along
the examples in Chapter 1, you used your Power BI Desktop file; alternatively, you can use the
CH02-Start.pbix file from this book’s companion files. This file only contains the queries that
are needed; extra queries used for review purposes have been removed. When you open the
file, you will see the Apply Changes button (Figure 2-2). You will also see this button every time
you make changes to your queries without applying them.

FIGURE 2-2 Apply Changes button

If you use CH02-Start.pbix, you might not see the Apply Changes button immediately, and
you might need to change some data source settings so that you can load data from your data
sources. This file relies on the database being hosted at localhost, and companion files being
at C:\Companion\Chapter 1. If any of this is different, clicking on the Apply Changes button will
result in either partial load of data or an error. To point queries to the correct addresses, you
can select Home > External data > Edit Queries > Data source settings. In the Data Source
Settings window, you will see four data sources:

 ■ Target.txt

 ■ Target20152016.xlsx

 ■ TargetQuantity.txt

 ■ WideWorldImportersDW database

To point a data source to the correct address, you will need to click on the Change Source
button for each source. In case of files, you will then need to click Browse and point to the
relevant file in the Open window. In case of the database, you will need to specify the correct
server and database names, as well as the credentials. After this, you might need to close and
re-open the file to see the Apply Changes button.

If you do not have access to a SQL Server, you can still follow along with the examples in this
chapter using CH02-Loaded.pbix file that has all data loaded, though you will not be able to
refresh the data.

From the Library of zhanl mamykova

ptg999

 86 CHAPTER 2 Modeling and visualizing data

Relationships
In Power BI, relationships are often required to produce the right values when you have a data
model with several tables. If you import your tables from a database where foreign keys are
defined, as in Wide World Importers case, then Power BI imports the relationships as well, but
only if you import all tables at once. In any case, you can manually create relationships.

After you click Apply Changes, data is loaded into the data model, and you can see all of the
tables and columns appear in the Fields pane on the right. You can now switch to the Relation-
ships view (Figure 2-3) to review the imported relationships. The Relationships view displays the
data model diagram.

FIGURE 2-3 Relationships view

In the Relationships view you can see all of the imported tables, with some of them connect-
ed by lines. Each line represents a physical relationship. For example, there is a line connecting
the Employee and Sale tables. The line has a 1 on the Employee end and an asterisk on the
Sale end. This means that the relationship is one-to-many with Employee on the one side and
Sale on the many side of the relationship. This line is solid, which means that the relationship

From the Library of zhanl mamykova

ptg999

 Skill 2.1: Create and optimize data models CHAPTER 2 87

is active. Finally, there is an arrow pointing in the direction of Sale, which means filtering the
Employee table also filters the Sale table, but the reverse is not true.

Tables can be moved around by dragging their headers. You can also resize a table by click-
ing on its edge and dragging it. If you want the layout to be decided by Power BI Desktop, you
can click on the Reset Layout button, which is in the bottom-right corner of the Relationships
view and looks like a circular arrow. If needed, the zoom can be changed by adjusting the slider
near the Reset Layout button. The right-most button adjusts the zoom to a level in which all
the elements fit in a page.

If you click on a relationship line, the columns that are part of the relationship in each table
will be highlighted. In the Employee table, it is the Employee Key column, and in the Sale table,
it is the Salesperson Key column. A relationship can only be created between two columns; it is
not possible to create a relationship between two columns in table A and two columns in table
B, for instance. To create a physical relationship between multiple columns in one table and
multiple columns in another table, you will need to create one new column in each table that
combines the relationship columns. This can be achieved both in Power Query Editor and by
creating a calculated column with DAX.

NOTE CREATING A RELATIONSHIP WITH MULTIPLE COLUMNS

For more details on how to create a relationship between several columns, see an article by
Reza Rad, “Relationship in Power BI with Multiple Columns” at: http://radacad.com/relation-
ship-in-power-bi-with-multiple-columns.

In Power BI, it is possible to have more than one relationship between any two tables,
but no more than one can be active at a time. This also means that tables can have multiple
inactive relationships or no relationship at all. For example, there is an inactive relationship
between the Date column from the Date table and Invoice Date Key column from the Sale
table. This line is dashed, which signifies an inactive relationship. Apart from the line style, the
relationship looks the same as others: it has a 1 and an asterisk at its ends, as well as the filter
direction arrow. Inactive relationships can be activated using the USERELATIONSHIP function
in DAX, covered later in the chapter.

Having several relationships between two tables can be a substitute for having role-playing
dimensions, which are tables that are duplicated to filter the same table by different keys. An
example is a calendar table that filters a sales table by order date, and another calendar table
that filters the same sales table by delivery date. With multiple relationships, you could filter
the sales table by both delivery date and order date using the USERELATIONSHIP function.
DAX is going to be covered in Section 2.2, “Create calculated columns, calculated tables, and
measures.”

From the Library of zhanl mamykova

http://radacad.com/relation-ship-in-power-bi-with-multiple-columns
http://radacad.com/relation-ship-in-power-bi-with-multiple-columns

ptg999

 88 CHAPTER 2 Modeling and visualizing data

You can edit a relationship by double-clicking on it, and you can delete one by right-clicking
on a relationship and selecting Delete. Alternatively, you can bring up a list of all relationships
by selecting Home > Relationships > Manage Relationships, or by choosing Modeling
> Relationships > Manage Relationships. The Manage Relationships window is shown in
Figure 2-4.

FIGURE 2-4 Manage Relationships window

When you edit a relationship by either double-clicking it in Relationships view or Edit in
Manage Relationships, the Edit Relationship window opens. Figure 2-5 shows the Edit Relation-
ship window when editing the relationship between the Bill To Customer Key column in the
Sale table and the Customer Key column in the Customer table.

From the Library of zhanl mamykova

ptg999

 Skill 2.1: Create and optimize data models CHAPTER 2 89

FIGURE 2-5 Edit Relationship window

In the Edit Relationship window, the column selection area looks similar to the Merge Que-
ries window we reviewed in the previous chapter. Tables can be selected from drop-down lists,
and for each table, you pick the column that will be part of the relationship. Below, you can
choose the cardinality of the relationship. Currently, Power BI supports only the following three
options:

 ■ Many to one (*:1)

 ■ One to one (1:1)

 ■ One to many (1:*)

When creating a relationship, the column on the one side of a relationship must have
unique values, and there must be no blank values. If you attempt to use a column with a blank
value in the one side of a relationship, you will see an error message like the following: “You
can’t create a relationship between these two columns because the ‘ProductKey’ column in
the ‘Product’ table contains null values.” Empty strings are allowed given that there is only one
empty string in the column.

If you try to create a relationship between two columns, neither of which has unique values,
you will see the following error message: “You can’t create a relationship between these two

From the Library of zhanl mamykova

ptg999

 90 CHAPTER 2 Modeling and visualizing data

columns because one of the columns must have unique values.” If you need to create a many-
to-many relationship, also known as M2M, you will need to create a bridge table that contains
unique values.

NOTE MANY-TO-MANY RELATIONSHIPS IN POWER BI

Many-to-many relationships can be found in many businesses. For example, a client can
have multiple bank accounts, including a joint account with their partner. For more details
on how to enable many-to-many relationships in Power BI, see an article by Marco Russo,
“Many-to-many relationships in Power BI and Excel 2016” at: https://www.sqlbi.com/articles/
many-to-many-relationships-in-power-bi-and-excel-2016/.

The Cross filter direction drop-down list has two options: Single or Both.

 ■ The Single option means that when you filter the table that is on the one side of a rela-
tionship, the table on the many side of the relationship is filtered as well, but filtering the
many side of the table does not automatically filter the one side of the table.

 ■ The Both option, also known as a bidirectional relationship, makes sure that both tables
filter each other. This option should be considered carefully, however, because it results
in performance implications. Furthermore, this setting may prevent you from creating
active relationships in certain cases.

NOTE BIDIRECTIONAL RELATIONSHIPS AND AMBIGUITY

For more information on bidirectional relationships in Power BI and why sometimes re-
lationships are inactive and cannot be made active, you can read Melissa Coates’s article,
“Why Is My Relationship Inactive in Power BI Desktop?” at: http://www.sqlchick.com/en-
tries/2015/11/7/why-is-my-relationship-inactive-in-power-bi-desktop.

Filters can flow through a chain of relationships, and the length of the chain does not mat-
ter. For example, if you have Category and Subcategory in a one-to-many relationship, and
Subcategory and Product in a one-to-many relationship, then the Category will also filter the
Product. Let’s also say that Product and Sales are related in a one-to-many relationship, and
Sales is related to Calendar in many-to-one relationship. This means that filters will flow all the
way from Category through Subcategory and Product to Sales, but Category will not filter Cal-
endar unless the relationship between Sales and Calendar has Cross filter direction set to both.

We can review the effect of bidirectional relationships with the following example:

1. In the Report view, click on the check box next to the Calendar Year Label field from the
Date table. This will create a table visual.

2. Click on the check box next to the Lineage Key from the City table.

The Date and City tables are in a many-to-many relationship through the Sale table. At this
stage, our table visual should look as follows:

From the Library of zhanl mamykova

https://www.sqlbi.com/articles/many-to-many-relationships-in-power-bi-and-excel-2016/
https://www.sqlbi.com/articles/many-to-many-relationships-in-power-bi-and-excel-2016/
http://www.sqlchick.com/entries/2015/11/7/why-is-my-relationship-inactive-in-power-bi-desktop
http://www.sqlchick.com/entries/2015/11/7/why-is-my-relationship-inactive-in-power-bi-desktop

ptg999

 Skill 2.1: Create and optimize data models CHAPTER 2 91

TABLE 2-1 A table with a Calendar Year Label and a Lineage Key from the City table

Calendar Year Label Lineage Key

116295

CY2013 116295

CY2014 116295

CY2015 116295

CY2016 116295

Total 116295

There are two things to note in Table 2-1. First, all Lineage Key values, which are counts, are the
same. Second, the first row has a blank value for the Calendar Year Label, even though we only
have four values in the column. This can be confirmed in the following way:

1. Open Power Query Editor.

2. Select the Date table.

3. Press Ctrl + G and double-click on the Calendar Year Label column.

4. Click on the AutoFilter arrow in the column’s header.

5. Click Load More next to the “List may be incomplete” Message.

Note that there are only four values: CY2013, CY2014, CY2015, and CY2016. In Table 2-1, we
see a blank value among Calendar Year Label values because both the Date and City tables
have a many-to-one relationship with the Sale table. The Date table’s active relationship is
with the Delivery Date Key column in the Sale table, which contains null values. For all values
on the many side of a relationship that do not have a corresponding value on the one side of
the relationship, Power BI adds a virtual blank row to the table on the one side. The number of
values without a match does not matter because only one virtual blank row is added. However,
if there are extra values on the one side, an extra row is not added to the many side. Filtering
out values without a match from the table on the many side removes the blank row.

You can now see how bidirectional filtering affects calculations. If you change the cross filter
direction of the relationship between the Sale and City tables from Single to Both, the table
visual will look as shown in Table 2-2.

TABLE 2-2 A table with Calendar Year Label and Lineage Key from the City table after applying bidirec-
tional filtering

Calendar Year Label Lineage Key

76

CY2013 872

CY2014 829

CY2015 786

CY2016 656

Total 116295

From the Library of zhanl mamykova

ptg999

 92 CHAPTER 2 Modeling and visualizing data

Note that the values are now all different, and the Total row still shows the same figure: 116,295.
The filters from the Date table now reach the City table. Here is how the table can be read:

 ■ For sales with no delivery date, there are 76 rows in the City table.

 ■ In CY2013, orders have been delivered to 872 cities.

 ■ In CY2014, orders have been delivered to 829 cities.

 ■ In CY2015, orders have been delivered to 786 cities.

 ■ In CY2016, orders have been delivered to 656 cities.

 ■ In total, we have 116,295 rows in the City table.

Note that the word “Total” in the table is slightly misleading. This is not a subtotal; instead, it
shows a value with no filters from the column applied. In this case, when the Calendar Year La-
bel column is not filtered, the Date table is not filtered either, so the Sale table is not filtered by
the Date table. As a result, the City table is not filtered by the Date table, and we have 116,295
rows in the City table, which explains the results that we see. At this stage, we should change
the cross filter direction of the relationship back to Single.

If you choose the one-to-one cardinality in relationship settings, then Both will be automat-
ically selected as the cross filter direction. If you try to choose Single, you will see the following
error message: “The filter direction you selected isn’t valid for this relationship.”

Below the Cardinality drop-down list, there is a Make This Relationship Active check box
with which you choose whether a relationship is active. Below the cross filter direction drop-
down list, there is an Apply security filter in both directions check box. This check box is
deactivated if you choose Single as the cross filter direction. If you select Both as the cross filter
direction, you will be able to change the default selection, which is unchecked. This check box
is responsible for carrying the security filters from the many-to-one side of a relationship when
you use Row-Level Security, which gives you more granular control over filtering. Because bidi-
rectional relationships might result in poor performance, allowing security filters to flow from
the many side to the one side of a relationship might be undesirable.

MORE INFO ROW-LEVEL SECURITY IN POWER BI

More information on Row-Level Security and how to configure it can be found in Section
3.4: “Configure security for dashboards, reports, and apps.”

The third check box in the Edit Relationship window, Assume Referential Integrity, is only
relevant if you use the DirectQuery data connectivity mode. This option results in more effi-
cient queries because queries will be using INNER JOIN statements instead of OUTER JOIN. For
the Assume Referential Integrity option to run correctly, there are two requirements.

 ■ First, the values in the column used on the many side of a relationship must never be
null or blank.

 ■ Second, each value on the many side of a relationship must have a corresponding value
in the column used on the one side of a relationship.

From the Library of zhanl mamykova

ptg999

 Skill 2.1: Create and optimize data models CHAPTER 2 93

If these conditions are not met, you will still be able to enable the option in some cases, but
you may see inconsistent results in your visuals.

MORE INFO ASSUME REFERENTIAL INTEGRITY SETTING

For more details on the Assume Referential Integrity setting, including examples and what
happens when you enable the setting when the requirements for using it properly are not
met, see the “Assume referential integrity settings in Power BI Desktop” article in Power BI
documentation at: https://powerbi.microsoft.com/en-us/documentation/powerbi-desktop-
assume-referential-integrity/.

If needed, Power BI Desktop can try to autodetect relationships when you click Autodetect
in the Manage Relationships window, though this feature is not always reliable. To review the
functionality, delete some existing relationships and try to use this feature to re-create the rela-
tionships. At the same time, review the effect of having no active relationships between tables.

First, let’s go back to the Report view and create a new visual by checking the Total Includ-
ing Tax field from the Sale table. A clustered column chart will be created automatically. We will
review working with visuals in detail later in this chapter. For now, click on the Bill To Customer
field in the Customer table. This will put Bill To Customer into the Axis field well in the clustered
column chart we created earlier. The visual can be seen in Figure 2-6.

FIGURE 2-6 Bill To Customer and Total Including Tax in a visual

From the Library of zhanl mamykova

https://powerbi.microsoft.com/en-us/documentation/powerbi-desktop-assume-referential-integrity/
https://powerbi.microsoft.com/en-us/documentation/powerbi-desktop-assume-referential-integrity/

ptg999

 94 CHAPTER 2 Modeling and visualizing data

Note that the three columns are of different lengths. To make the difference easier to see,
click on the ellipsis in the top-right corner of the visual and select Show Data, which brings up
a table underneath the graph. The table has two columns: Bill To Customer and Total Including
Tax. There are three rows, and each row has a different value. The table is shown in Table 2-3.

TABLE 2-3 Bill To Customer and Total Including Tax values with relationship

Bill To Customer Total Including Tax

N/A 73,037,043.78

Tailspin Toys (Head Office) 62,654,262.56

Wingtip Toys (Head Office) 62,352,133.11

Next, select Home > Relationships > Manage Relationships. The first relationship, the one
from Sale (Bill To Customer Key) to Customer (Customer Key) is selected. Click Delete under-
neath the list of relationships. You will then be asked to confirm your action; you should select
Delete again. Once you click Close, you will see the numbers in the table change, and the col-
umns in the chart will be of the same length. The new table values can be seen in Table 2-4.

TABLE 2-4 Bill To Customer and Total Including Tax values without relationship

Bill To Customer Total Including Tax

N/A 198,043,439.45

Tailspin Toys (Head Office) 198,043,439.45

Wingtip Toys (Head Office) 198,043,439.45

The new values are all the same because the Customer table does not filter the Sale table now.
Even though there is a relationship, it is inactive. Therefore, each row displays the total for all
customers.

EXAM TIP

When every value in a visual is the same, there is a good chance that something is wrong
with the relationships. In an exam question, if you are given information that actual values
are different from what they appear to be in a visual, you should create an active relation-
ship.

Before recreating the relationship, review the Autodetect functionality. Let’s open the
Manage Relationships window again and select Autodetect. After a few seconds, the follow-
ing message will be displayed: “Found 1 new relationship(s).” Upon clicking Close, you can see

From the Library of zhanl mamykova

ptg999

 Skill 2.1: Create and optimize data models CHAPTER 2 95

the new relationship at the bottom of the list: from Date (ISO Week Number) to Customer
(Customer Key). Because this relationship is obviously meaningless, we should delete it. If you
click New, the Create Relationship window will be opened, which looks the same as the Edit
Relationship window. Select the Customer Key column from the Customer table on the one
side and the Bill To Customer Key from the Sale table on the many side of the relationship and
keep all other settings as-is. After clicking OK and Close, the values in the table will again be the
same as Table 2-3. There is an alternative way to create relationships. In the Relationships view,
you can drag a field from one table on top of a field from another table to create a relation-
ship between the two tables. The direction in which you drag the fields does not matter. Power
BI Desktop will automatically detect which column is on the one side and which one is on the
many side, or it might create a one-to-one relationship if it is appropriate.

Note that if upon data refresh, a column that is on the one side of a relationship contains
some duplicate or null values, the data refresh will be canceled and old data will be preserved.

MORE INFO RELATIONSHIPS IN POWER BI DESKTOP

For a video overview of relationships in Power BI Desktop, see “How to Manage Your Data
Relationships” at: https://powerbi.microsoft.com/en-us/guided-learning/powerbi-learning-
2-2-manage-data-relationships/.

For more examples, see the official documentation article, “Create and manage relation-
ships in Power BI Desktop” at: https://powerbi.microsoft.com/en-us/documentation/power-
bi-desktop-create-and-manage-relationships/.

Optimize models for reporting
After creating relationships, you may want to optimize your data model for reporting. This
includes tasks such as defining the sort order of columns by other columns and hiding extrane-
ous fields.

Sort by column
In some cases, you might need to override the default sort order of a column. For example,
if you go to the Report view and create a new visual by clicking on the check box next to the
Month field in the Date table, a table visual will be created with values from this field, shown in
Figure 2-7 below.

From the Library of zhanl mamykova

https://powerbi.microsoft.com/en-us/guided-learning/powerbi-learning-2-2-manage-data-relationships/
https://powerbi.microsoft.com/en-us/guided-learning/powerbi-learning-2-2-manage-data-relationships/
https://powerbi.microsoft.com/en-us/documentation/power-bi-desktop-create-and-manage-relationships/
https://powerbi.microsoft.com/en-us/documentation/power-bi-desktop-create-and-manage-relationships/

ptg999

 96 CHAPTER 2 Modeling and visualizing data

FIGURE 2-7 Table visual with Month as the only field

Note that the values appear in alphabetic order. We can change the sorting order of this
column, given that we have another column to sort by. In this case, we can sort the Month
column by the Calendar Month Number column. To do this, click on the Month field name in
the Fields pane, then select Modeling > Sort > Sort by Column. You will then see a list of
columns from the Date table. In this case, select Calendar Month Number. You can then imme-
diately notice that the values now appear in the right order: from January to December.

When you sort column A by column B, each value in column A must have only one cor-
responding value in column B. However, each value in column B does not necessarily need to
have only one corresponding value in column A. For example, create a table visual with the
Calendar Month Label field from the Date table. Because we have not yet applied a new sort
order, the values are sorted alphabetically.

At this stage, go to the Data view, which is divided into two parts: most of the space is taken
up by a table preview, and on the right side we can see the Fields pane that is almost the same
as in the Report view. Note that at the bottom of the Data view, there is a line that gives you
the following information:

 ■ Table selected

 ■ Number of rows in the table

 ■ Column selected

 ■ Number of distinct values in the column

From the Library of zhanl mamykova

ptg999

 Skill 2.1: Create and optimize data models CHAPTER 2 97

This feature can be very useful when you want to quickly understand how many rows there
are in a table or how many distinct values a column has.

If you select the Calendar Month Number column, you will see the following information
below the table preview: “TABLE: Date (1,461 rows) COLUMN: Calendar Month Label (12 distinct
values)”. If you attempt to sort the Calendar Month Number column by the Calendar Month
Label column, you will encounter the following error message: “We can’t sort the ‘Calendar
Month Number’ column by ‘Calendar Month Label’. There can’t be more than one value in
‘Calendar Month Label’ for the same value in ‘Calendar Month Number’. Please choose a dif-
ferent column for sorting or update the data in ‘Calendar Month Label’.”

However, you can successfully sort the Calendar Month Label column by the Calendar
Month Number column, even though there are 48 distinct values in the former and 12 in the
latter.

If you now go to the Report view, you will see that month names in Calendar Month Label
values are sorted correctly, though the year-month combinations are not correct. First, you see
four Januaries; one for each of the four years, then four Februaries, and so on. To mitigate this,
create a custom column in Power Query Editor that has the same number of distinct values as
the Calendar Month Label column, then sort the Calendar Month Label column by the new
column. To achieve this, do the following:

1. Open Power Query Editor.

2. Select the Date query.

3. Create a custom column called “Year Month Number” with the following formula:

= [Calendar Year] * 100 + [Calendar Month Number]

4. Click OK.

5. In the formula bar, after “[Calendar Month Number]” and before the closing parenthe-
sis, add “, Int64.Type” without quotation marks. The whole step formula should be the
following:

= Table.AddColumn(Dimension_Date, "Year Month Number", each [Calendar Year] * 100
+ [Calendar Month Number], Int64.Type)

6. Rename the step to AddedYearMonthNumber. If you open the Advanced Editor, you
should see the following code in Listing 2-1.

From the Library of zhanl mamykova

ptg999

 98 CHAPTER 2 Modeling and visualizing data

LISTING 2-1 Date query after adding Year Month Number

let
 Source = Sql.Databases("localhost"),
 WideWorldImportersDW = Source{[Name="WideWorldImportersDW"]}[Data],
 Dimension_Date = WideWorldImportersDW{[Schema="Dimension",Item="Date"]}[Data],
 AddedYearMonthNumber = Table.AddColumn(Dimension_Date, "Year Month Number",
each [Calendar Year] * 100 + [Calendar Month Number], Int64.Type)
in
 AddedYearMonthNumber

7. Click Close & Apply in Power Query Editor.

8. Go to the Data view.

9. Select the Calendar Month Label column.

10. Change the sort column for Calendar Month Label from Calendar Month Number to
Year Month Number.

11. Go to the Report view.

NOTE CUSTOM COLUMN DATA TYPES

In step 5 above, we added a piece of code to our formula that sets the data type for the new
column to Whole Number, yet still allows Query Folding to take place. If you apply data type
as a new step instead, Query Folding will break.

Notice that the values in the Calendar Month Label column are now sorted correctly. You
should also create a new column called “Fiscal Year Month Number” to sort the Fiscal Month
Label column values correctly. To create the new column, follow a process like before:

1. Right-click on the Date table in the Fields pane and select Edit Query. This will open
Power Query Editor, taking you directly to the Date query.

2. Create a custom column called “Fiscal Year Month Number” with the following formula:

= [Fiscal Year] * 100 + [Fiscal Month Number]

3. Insert “, Int64.Type” without quotation marks between “[Fiscal Month Number]” and the
closing parenthesis, so that your step formula looks like the following:

= Table.AddColumn(AddedYearMonthNumber, "Fiscal Year Month Number", each [Fiscal
Year] * 100 + [Fiscal Month Number], Int64.Type)

4. Rename the step to AddedFiscalYearMonthNumber, so that the whole query code is as
follows:

LISTING 2-2 Date query after adding Fiscal Year Month Number

let
 Source = Sql.Databases("localhost"),
 WideWorldImportersDW = Source{[Name="WideWorldImportersDW"]}[Data],
 Dimension_Date = WideWorldImportersDW{[Schema="Dimension",Item="Date"]}[Data],
 AddedYearMonthNumber = Table.AddColumn(Dimension_Date, "Year Month Number",

From the Library of zhanl mamykova

ptg999

 Skill 2.1: Create and optimize data models CHAPTER 2 99

each [Calendar Year] * 100 + [Calendar Month Number], Int64.Type),
 AddedFiscalYearMonthNumber = Table.AddColumn(AddedYearMonthNumber, "Fiscal
Year Month Number", each [Fiscal Year] * 100 + [Fiscal Month Number], Int64.Type)
in
 AddedFiscalYearMonthNumber

5. Click Close & Apply.

Change the sorting order of columns in the Date table as shown in Table 2-5.

TABLE 2-5 New sort columns

Column Name Sort by Column

Fiscal Month Label Fiscal Year Month Number

Day Day Number

Short Month Calendar Month Number

Once you have done this, all columns in the Date table will be sorted correctly.

MORE INFO SORT BY COLUMN

For more examples and details on the Sort by Column feature in Power BI Desktop and sort-
ing in general, see “Sort by column in Power BI Desktop” at: https://docs.microsoft.com/en-
us/power-bi/desktop-sort-by-column.

Hide fields and tables
Most data models contain data that is required for technical purposes, but not needed for
reporting. A typical example is the key columns: they are required for relationships, but keys
are rarely used in visualizations. It is best practice to hide such column in report view. This is
different from deleting columns: the columns are still kept in the data model, but they are hid-
den from the Report view unless you unhide or choose to show them.

To hide a field, right-click on it in the Fields pane and select Hide. To view all fields, includ-
ing hidden ones, you can right-click on any field and select View Hidden. This will show hidden
fields in darker color alongside the fields that are not hidden. You can also unhide all hidden
fields by right-clicking on any field and selecting Unhide All. Note that you will not be asked to
confirm your action. Alternatively, you can go to the Data view, where hidden fields are always
shown. The header and values of hidden columns appear darker in table previews. You can also
hide whole tables in the same way as hiding fields.

Apart from the Report and Data views, you can also hide fields and tables in the Relation-
ships view.

In our Wide World Importers example, hide the columns shown in Table 2-6.

From the Library of zhanl mamykova

https://docs.microsoft.com/en-us/power-bi/desktop-sort-by-column
https://docs.microsoft.com/en-us/power-bi/desktop-sort-by-column

ptg999

 100 CHAPTER 2 Modeling and visualizing data

TABLE 2-6 Columns to be hidden

Table Column

City City Key

City Lineage Key

City Valid From

City Valid To

City WWI City ID

Customer Customer Key

Customer Lineage Key

Customer Valid From

Customer Valid To

Customer WWI Customer ID

Date Calendar Month Number

Date Calendar Year

Date Day Number

Date Fiscal Month Number

Date Fiscal Year

Date Fiscal Year Month Number

Date Year Month Number

Employee Employee Key

Employee WWI Employee ID

Sale City Key

Sale Customer Key

Sale Delivery Date Key

Sale Invoice Date Key

Sale Salesperson Key

Sale Stock Item Key

Sale WWI Invoice ID

Stock Item Lineage Key

Stock Item Stock Item Key

Stock Item Valid From

Stock Item Valid To

Stock Item WWI Stock Item ID

Target Bill To Customer

Target Calendar Year

From the Library of zhanl mamykova

ptg999

 Skill 2.1: Create and optimize data models CHAPTER 2 101

Formatting columns
When importing data to Power BI, it applies default formatting to all columns. Formatting is
different from setting data types: when you format a column, the underlying data types stays
the same, but visually it appears differently. Text, True/False, and Binary data types have only
one formatting option each. For the following data types, change the formatting:

 ■ Decimal number

 ■ Fixed decimal number

 ■ Whole number

 ■ Date/time

 ■ Date

 ■ Time

Depending on the data type, different formatting options are available. The first three data
types—decimal, fixed decimal, and whole number—share the available formatting options.
For example, you can format a date column to display the year only, or you can format a Deci-
mal Number to appear as a Whole Number. Note that for all calculation purposes, values will
stay the same, so decimals will add up as expected.

To format a column, select it in the Fields pane or in the Data view, then select Modeling >
Formatting > Format and select the desired format. When you change formatting in the Data
view, you will immediately see the new format applied.

Apply the formatting options shown in Table 2-7 to the specified columns.

TABLE 2-7 New column formatting

Table Column Format Options

City Latest Recorded Population Whole number Thousands separator

Date Date *14/03/2001 (d/MM/yyyy)

Sale Profit Currency general

Sale Quantity Whole number Thousands separator

Sale Tax Amount Currency general

Sale Total Excluding Tax Currency general

Sale Total Including Tax Currency general

Sale Unit Price Currency general

Stock Item Recommended Retail Price Currency general

Stock Item Unit Price Currency general

Target Target Amount Excluding Tax Currency general

Target Target Quantity Whole number Thousands separator

From the Library of zhanl mamykova

ptg999

 102 CHAPTER 2 Modeling and visualizing data

NOTE DATE FORMATS IN POWER BI

The list of available date formats in Power BI Desktop depends on your locale. For example,
if you are using a computer with locale set to the United States, you may not see the d/mm/
yyyy format. Instead, you should select the first option that has an asterisk in front of it.

NOTE OPTIMIZING DATA MODELS FOR REPORTING

For a video overview and more examples of how you can optimize your data model for
reporting purposes, see “Optimizing Data Models for Better Visuals” at https://powerbi.
microsoft.com/en-us/guided-learning/powerbi-learning-2-4-optimize-data-models/.

Manually type in data
Because not all data needs to come from a source, Power BI has an option to enter data manu-
ally. You can type in your data manually by selecting Home > External data > Enter Data,
which opens the Create Table window (Figure 2-8). The same button is available in Power
Query Editor in the New Query section of the Home tab.

FIGURE 2-8 Create Table window

In the Create Table window, you can type data manually, as well as paste values. When you
paste values, Power BI tries to analyze the data, and if it deems it appropriate, it will promote
the first row of data to headers. If this is erroneous, you will be able to undo the action by click-
ing Undo Headers in the same window. Pasted values can be edited in this window as well. You
can delete whole rows or columns by right-clicking on a row or column header and selecting

From the Library of zhanl mamykova

https://powerbi.microsoft.com/en-us/guided-learning/powerbi-learning-2-4-optimize-data-models/
https://powerbi.microsoft.com/en-us/guided-learning/powerbi-learning-2-4-optimize-data-models/

ptg999

 Skill 2.1: Create and optimize data models CHAPTER 2 103

Delete. In addition to that, you can insert new rows and columns either by clicking on an as-
terisk in the row or column headers, or right-clicking on a row or column header and selecting
Insert. Standard operations such as Cut, Copy, and Paste are allowed in this window. You can
select the whole table by pressing Ctrl + A.

Once you are satisfied with the entered data, you can either load it directly to the data
model, or you can edit it in Power Query Editor before loading. Enter the following table, Table
2-8, and name it Scale:

TABLE 2-8 Scale table to be entered manually

Scale

1

1000

1000000

Once you are done, click Edit. Note that Power Query automatically detected the data type of
the column—Whole Number. Power Query would do it regardless of our choosing to load the
table directly or edit it first.

Note that the Source step has a gear icon next to it. Click it, and you will see the Create
Table. This way, you can edit your data in the Create Table window even after you close the
window.

Power BI uses compressed JSON to convert the typed data into a table. If you open Ad-
vanced Editor, you will see the code in Listing 2-3, which has been formatted for presentation
purposes.

LISTING 2-3 Entered data M code

let
 Source = Table.FromRows(
 Json.Document(Binary.Decompress(
 Binary.FromText("i45WMlSK1QGSBgYGcAaYHQsA ", BinaryEncoding.Base64),
 Compression.Deflate)
),
 let _t = ((type text) meta [Serialized.Text = true]) in type table [Scale = _t]
),
 #"Changed Type" = Table.TransformColumnTypes(Source,{{"Scale", Int64.Type}})
in
 #"Changed Type"

NOTE ENTERING DATA DIRECTLY INTO POWER BI DESKTOP

For more examples on manual data entry, see “Enter data directly into Power BI Desktop” at
https://docs.microsoft.com/en-us/power-bi/desktop-enter-data-directly-into-desktop.

From the Library of zhanl mamykova

https://docs.microsoft.com/en-us/power-bi/desktop-enter-data-directly-into-desktop

ptg999

 104 CHAPTER 2 Modeling and visualizing data

Use Power Query
Power Query enables you to create tables using pure M. For example, you can create Table 2-8
from a list, from records, or by using a table construct.

Lists
Lists can be defined in Power Query inside curly braces with values separated by commas. This
is an example of a list that contains three elements—1, 2, and 3:

{ 1, 2, 3 }

Because the list contains three consecutive integers, it can be defined using the range nota-
tion with two periods between integers:

{ 1 .. 3 }

Because each symbol has a corresponding Unicode number, you can also define ranges of
symbols using the same notation. The following list produces the Latin alphabet in lowercase:

{ "a" .. "z" }

Lists do not need to contain values of the same data type. The following list is valid:

{ "a", true, 2 }

Table 2-8 can be reproduced in M by following these steps:

1. In Power Query Editor, select Home > New Query > New Source > Blank Query.

2. Rename the query to ScaleFromList and disable its loading.

3. In the formula bar, type the following code:

= { 1, 1000, 1000000 }

4. Select List Tools Transform > Convert > To Table.

5. In the To Table dialog box, accept the default settings and click OK.

6. Double-click on the Column1 header and type Scale.

7. Change the data type of the Scale column to Whole Number.

The resulting table is equivalent to the table we entered manually. If you open Advanced
Editor, you should see the code from Listing 2-4.

From the Library of zhanl mamykova

ptg999

 Skill 2.1: Create and optimize data models CHAPTER 2 105

LISTING 2-4 Scale table from list

let
 Source = { 1, 1000, 1000000 },
 #"Converted to Table" = Table.FromList(Source, Splitter.SplitByNothing(), null,
null, ExtraValues.Error),
 #"Renamed Columns" = Table.RenameColumns(#"Converted to Table",{{"Column1",
"Scale"}}),
 #"Changed Type" = Table.TransformColumnTypes(#"Renamed Columns",{{"Scale",
Int64.Type}})
in
 #"Changed Type"

If you import a list into your data model, it will be converted to a table with one column that
shares its name with the query. The column will be of type text regardless of values stored in the list.

Records
Records can be defined in M in square brackets following the “field name = value” notation.
One record can contain multiple fields. The following is an example of a record with two fields:
Quantity and Unit Price.

[Quantity = 2, Unit Price = 3]

The Scale table from Table 2-5 can be built from records with the following code.

LISTING 2-5 Scale table from records

Table.FromRecords (
 {
 [Scale = 1],
 [Scale = 1000],
 [Scale = 1000000]
 },
 type table [Scale = Int64.Type]
)

If you import a record into your data model, it will be converted into a table with two text
columns: Name and Value. The number of rows will correspond to the number of fields in the
record.

Tables
Tables can be created in M using the #table construct, which can result in much more concise
M queries. You can either specify columns as a list with no types defined, or you can specify
column names and types in a record, like in Listing 2-6.

From the Library of zhanl mamykova

ptg999

 106 CHAPTER 2 Modeling and visualizing data

LISTING 2-6 Table constructs in M
// Untyped columns

#table (
 {"Quantity", "Unit Price"},
 {
 { 2, 3 },
 { 5, 7 }
 }
)

// Columns in data types defined

#table (
 type table [Quantity = Int64.Type, Unit Price = Currency.Type],
 {
 { 2, 3 },
 { 5, 7 }
 }
)

The code from Listing 2-7 re-creates the Scale table from Table 2-8 in M:

LISTING 2-7 Scale table using the table construct in M

#table (
 type table [Scale = Int64.Type],
 {
 { 1 },
 { 1000 },
 { 1000000 }
 }
)

Lists, records, and tables can be nested inside each other. When these elements are import-
ed, they are converted to text cells with “[List]”, “[Record]”, and “[Table]” written, respectively.

We will need only one Scale table later in this chapter, so if you defined more than one Scale
table, you should delete the extras. You can then click Close & Apply in Power Query Editor.

EXAM TIP

The exam does not test you on advanced M, but you should be aware of the general M
syntax and structured data values available in M. For a general overview of M syntax, see
“Expressions, values, and let expression” at: https://msdn.microsoft.com/en-us/library/
mt299038.aspx.

MORE INFO POWER QUERY CHEAT SHEET

For a concise reference on Power Query data structures and basic operations, see Ivan
Bondarenko’s Power Query Cheat Sheet at GitHub: https://github.com/IvanBond/Power-
Query-Cheat-Sheet.

From the Library of zhanl mamykova

https://msdn.microsoft.com/en-us/library/mt299038.aspx
https://msdn.microsoft.com/en-us/library/mt299038.aspx
https://github.com/IvanBond/Power-Query-Cheat-Sheet
https://github.com/IvanBond/Power-Query-Cheat-Sheet

ptg999

 Skill 2.2: Create calculated columns, calculated tables, and measures CHAPTER 2 107

Skill 2.2: Create calculated columns, calculated tables,
and measures

With what we have reviewed so far, it is already possible to create reports and visualize data,
though the calculations will be limited. For more sophisticated analysis, you might need to
enrich your model with calculated columns, calculated tables, and measures. For this, Power BI
uses Data Analysis Expressions (DAX). DAX is the language of Power BI, Power Pivot for Excel,
and SQL Server Analysis Services Tabular.

With DAX, you can derive many more insights from your data compared to using just the
existing fields. For example, DAX allows you to dynamically calculate period over period fig-
ures, as well as percentages, such as weighted averages. In this section, we are going to review
the skills that are needed to perform calculations and query with DAX.

This section covers how to:
 ■ Create DAX formulas for calculated columns

 ■ Calculated tables

 ■ Measures

 ■ Use What If parameters

Create DAX formulas for calculated columns
DAX is a functional language that resembles the Excel formula language, and there are many
functions that appear in both. Unlike the M language, DAX is not case-sensitive in most cases.
At the same time, there are some important differences:

 ■ In DAX, there is no concept of a cell. If you need to get a value from a table, you will
need to filter a specific column down to that value.

 ■ DAX is strongly typed: it is not possible to mix values of different data types in the same
column.

A calculated column is an additional column in a table that you define with a DAX formula.
The difference between a custom column created with M and a calculated column created with
DAX is that the latter is based on data that has already been loaded into your model. Further-
more, calculated columns do not appear in Power Query Editor.

You can create a calculated column by selecting Modeling > Calculations > New Column.
This will create a calculated column in the table that is selected in the Fields pane. Alternatively,
you can right-click on a table in the Fields pane and select New Column. Power BI will then
open a formula bar (Figure 2-9) where you can write your DAX formula, then click on the check
mark or press Enter to validate the formula. Power BI will also create a new field in the Fields
pane, and this new field will have a column icon next to it.

From the Library of zhanl mamykova

ptg999

 108 CHAPTER 2 Modeling and visualizing data

FIGURE 2-9 Formula bar after clicking New Column

The formula that you write is automatically applied to each row in the new column. You can
reference another column in the following way:

'Table name'[Column name]

For example, calculate Unit Price including Tax by creating a calculated column in the Sale
table with the following formula:

Unit Price Including Tax = Sale[Unit Price] * (1 + Sale[Tax Rate] / 100)

Note that the formula includes both the column name—it precedes the equals operator—
and the column formula itself, which follows the equals operator.

The Power BI Desktop formula bar has IntelliSense enabled, and it helps you with selecting
tables, columns, and functions after you type a few characters, and it also highlights syntax.
Instead of copying the above formula, you can start by specifying the column name, followed
by the equals operator, then start typing uni. At this stage, IntelliSense will give you a list of all
column and functions that have “uni” appear as part of their names (Figure 2-10). If you select a
function from the list, it will also display the function’s description.

FIGURE 2-10 IntelliSense suggested values

From the Library of zhanl mamykova

ptg999

 Skill 2.2: Create calculated columns, calculated tables, and measures CHAPTER 2 109

You can navigate in this list with arrow keys on your keyboard and press Tab to auto-com-
plete the statement. Alternatively, you can double-click on a value with your mouse, which has
the same effect as pressing the Tab key.

In general, columns should always be referenced using a fully qualified syntax, which is a
table name in single quotation marks followed by a column name in square brackets. If a table
name does not contain spaces, does not start with a number, and is not a reserved keyword
such as Calendar, then you can safely omit single quotation marks. If IntelliSense highlights a
word, then it is likely a reserved keyword.

When you a referencing a column in the same table, you can use just a column name in
square brackets. While this is syntactically correct, it might be difficult to read, especially be-
cause it is best practice to reference measures without table names. Measures are discussed in
more detail later in this chapter.

If you want to reference a column from a table that is in a one-to-many relationship with
the current table, you need to use the RELATED function. For example, you could add a Bill To
Customer column to the Sale table with the following formula:

Customer = RELATED (Customer[Customer])

NOTE USING RELATED WITH INACTIVE RELATIONSHIPS

By default, DAX will use the active relationship to get the related value. It is also possible to
get a related value while using an inactive relationship.

RELATED has a companion function, RELATEDTABLE, which works in the opposite direction.
For example, you could add a calculated column to the Date table that counts the number
of rows in the Sale table. Because it is not possible to store a multi-row table in one row, you
would also need to apply an aggregation function to RELATEDTABLE. In this case, we can use
COUNTROWS, which counts the number of rows in a table:

Sales # = COUNTROWS (RELATEDTABLE (Sale))

Note that RELATEDTABLE only works in one direction by default. If you have not enabled
bidirectional relationships, the following calculated column in the Date table will contain the
same value for each row of the column, which is the same as the number of rows in the City
table:

Cities # = COUNTROWS (RELATEDTABLE (City))

If this column is defined in the Date table, changing cross filter direction between the Sale
and City tables from Single to Both makes sure that each row shows the number of cities to
which we sold on a particular date.

From the Library of zhanl mamykova

ptg999

 110 CHAPTER 2 Modeling and visualizing data

DAX data types
Every column in a Power BI data model has exactly one data type. Currently, DAX supports the
following eight data types:

 ■ Decimal Number This is the most popular numeric data type. It is designed to hold
fractional numbers, and it can handle whole numbers as well.

 ■ Fixed Decimal Number This data type is similar to Decimal Number, but the number
of decimal places is fixed at four. Internally, numbers of this type are stored as integers
divided by 10,000.

 ■ Whole Number This data type stores integers.

 ■ Date/Time This data type stores dates and times together. Internally, values are
stored as decimal numbers.

 ■ Date Allows you to store dates without time. If you convert a date/time value to date,
the time portion is truncated, not rounded.

 ■ Time This data type stores time only, without dates.

 ■ Text Stores text strings in Unicode format.

 ■ True/False Also known as Boolean, this data type stores True and False values, which,
if converted to a number, will be 1 and 0, respectively.

DAX can perform implicit type conversions if needed. For example, you can add TRUE to a
text string, “2”, and the result will be 3:

3 = "2" + TRUE

On the other hand, if you concatenate two numbers, you will get a text string as a result:

23 = 2 & 3

You can perform explicit type conversion with functions such as INT and VALUE, which con-
vert values to integers. For example, the following expression results in 43243:

43243 = INT ("2018-05-23")

Dates in the form of text strings can be converted to dates using the DATEVALUE function:

23 May 2018 = DATEVALUE ("2018-05-23")

You can convert numeric and datetime values to text using the FORMAT function, which
takes two arguments: an expression to convert and a format string. FORMAT is an example of a
function that is case-sensitive. The following two expressions provide different results:

From the Library of zhanl mamykova

ptg999

 Skill 2.2: Create calculated columns, calculated tables, and measures CHAPTER 2 111

// AM or PM, depending on time of the day

Upper = FORMAT (NOW (), "AM/PM")

// am or pm, depending on time of the day

Lower = FORMAT (NOW (), "am/pm")

MORE INFO DAX FORMAT FUNCTION

To learn more about the FORMAT function in DAX, see “FORMAT Function (DAX)” at https://
msdn.microsoft.com/en-us/library/ee634924.aspx.

The format strings used in the function are based on the Visual Basic format strings. For
more information on the format strings that the FORMAT function accepts, see:

 ■ “Pre-Defined Numeric Formats for the FORMAT Function” at https://msdn.microsoft.
com/en-us/library/ee634561.aspx.

 ■ “Custom Numeric Formats for the FORMAT Function” at https://msdn.microsoft.com/
en-us/library/ee634206.aspx.

 ■ “Pre-defined Date and Time formats for the FORMAT Function” at https://msdn.micro-
soft.com/en-us/library/ee634813.aspx.

 ■ “Custom Date and Time formats for the FORMAT Function” at https://msdn.microsoft.
com/en-us/library/ee634398.aspx.

Blank or null values in DAX act like zeros in many cases; this behavior is very different
from SQL nulls and Excel empty cells. For example, a sum of two blanks is blank. In Excel you
would get 0; the sum of 1 and blank is 1, whereas in SQL, the sum is NULL. You can generate a
blank value using the BLANK function. You can check whether an expression is blank with the
ISBLANK function.

MORE INFO DATA TYPES IN POWER BI

For a more detailed overview of data types supported in Power BI, including a table of
implicit type conversions and BLANK behavior, see “Data types in Power BI Desktop” at:
https://docs.microsoft.com/en-us/power-bi/desktop-data-types.

From the Library of zhanl mamykova

https://msdn.microsoft.com/en-us/library/ee634924.aspx
https://msdn.microsoft.com/en-us/library/ee634924.aspx
https://msdn.microsoft.com/en-us/library/ee634561.aspx
https://msdn.microsoft.com/en-us/library/ee634561.aspx
https://msdn.microsoft.com/en-us/library/ee634206.aspx
https://msdn.microsoft.com/en-us/library/ee634206.aspx
https://msdn.micro-soft.com/en-us/library/ee634813.aspx
https://msdn.micro-soft.com/en-us/library/ee634813.aspx
https://msdn.microsoft.com/en-us/library/ee634398.aspx
https://msdn.microsoft.com/en-us/library/ee634398.aspx
https://docs.microsoft.com/en-us/power-bi/desktop-data-types

ptg999

 112 CHAPTER 2 Modeling and visualizing data

DAX operators
In DAX, you can use the following operators, as shown in Table 2-9.

TABLE 2-9 DAX operators

Type Operator Meaning Example Result

Arithmetic + Addition 2 + 3 5

- Subtraction or sign 2 - 3 -1

* Multiplication 2 * 3 6

/ Division 3 / 2 1.5

^ Exponentiation 2 ^ 3 8

Comparison = Equal to 2 = 3 FALSE

> Greater than 2 > 3 FALSE

< Less than 2 < 3 TRUE

>= Greater than or equal to 2 >= 3 FALSE

<= Less than or equal to 2 <= 3 TRUE

<> Not equal to 2 <> 3 TRUE

Text concatenation & Concatenates two text values “2” & “3” 23

Logical && AND condition between two
Boolean expressions

(2 = 3) && (1 = 1) FALSE

|| OR condition between two
Boolean expressions

(2 = 3) || (1 = 1) TRUE

IN Belonging in a list 2 IN { 1, 2, 3 } TRUE

NOT Negation NOT 2 = 3 TRUE

Some logical operators are also available as functions. Instead of the double ampersand, you
can use the AND function:

AND (2 = 3, 1 = 1)

Instead of a double pipe, you can use the OR function:

OR (2 = 3, 1 = 1)

Both functions, AND and OR, take exactly two arguments. If you need to evaluate more
than two conditions, you can nest your functions:

AND (2 = 3, AND (1 = 1, 5 = 5))

The NOT operator can be used as a function as well:

NOT (2 = 3)

From the Library of zhanl mamykova

ptg999

 Skill 2.2: Create calculated columns, calculated tables, and measures CHAPTER 2 113

MORE INFO DAX OPERATOR REFERENCE

For more examples and details on DAX operators, including operator precedence, see “DAX
Operator Reference” at: https://msdn.microsoft.com/en-us/library/ee634237.aspx.

Using DAX functions in calculated columns
DAX has more than 200 functions. Some functions return scalar values, while others return
tables. If a function results in a one-column one-row table, it can be implicitly converted to a
scalar value.

There are many functions that perform the same tasks as some M functions. For example,
the LOWER, UPPER, LEN, and TRIM functions transform text values in the same way as the M
Text.Lower, Text.Upper, Text.Length, and Text.Trim functions, respectively.

Unlike M functions, DAX functions can perform implicit type conversion. For instance, in M,
the following expression results in the error shown in Figure 2-11:

Text.Length (100)

FIGURE 2-11 Error message

In DAX, on the other hand, LEN (100) returns 3. Using LEN on non-text values, however, is
somewhat unpredictable, and it should be combined with the FORMAT function. For example,
if a column 'Date'[Date] contains a date value of 1 January 2018, then a corresponding value in
the following calculated column will result in 8:

DAX Length = LEN ('Date'[Date])

However, if you format values explicitly inside the LEN function, then it is possible to control
the results. The following calculated column returns 10:

DAX Formatted Length = LEN (FORMAT ('Date'[Date], "dd-MM-yyyy"))

The LEN function, as well as FIND or SEARCH, can be useful when you want to extract sub-
strings of a variable length. For instance, in the Customer table, there is a column called Buying
Group, which has three distinct values:

 ■ N/A

 ■ Tailspin Toys

 ■ Wingtip Toys

From the Library of zhanl mamykova

https://msdn.microsoft.com/en-us/library/ee634237.aspx

ptg999

 114 CHAPTER 2 Modeling and visualizing data

Let’s say you want to extract the first word only, so you are looking to create a column with
the following three values:

 ■ N/A

 ■ Tailspin

 ■ Wingtip

Note that each word has a different length. If the number of characters you wanted to
extract were fixed, you could use the LEFT function, which gives you the first N characters. This
function, along with RIGHT, MID, and LEN, also exists in Excel. To create a calculated column
with the first three characters from Buying Group, you would write the following formula:

Buying Group First Three Characters = LEFT (Customer[Buying Group], 3)

To extract the first word, first, calculate the length of the first word. For this, you need to
find the position of the space symbol in a string. In this case, use the FIND or SEARCH functions.
Both functions have two required arguments: text to find and where to search. The only dif-
ference between them is that the FIND is case-sensitive, while SEARCH is not. Because we are
looking for a space symbol, we can use either function. We can first try the following formula:

Buying Group First Space Position = FIND (" ", Customer[Buying Group])

Because there is no space in “N/A,” we get an error that propagates to the entire column,
even though there is only one row in which the space was not found. You can see the error in
Figure 2-12.

FIGURE 2-12 DAX error message in the whole column

From the Library of zhanl mamykova

ptg999

 Skill 2.2: Create calculated columns, calculated tables, and measures CHAPTER 2 115

This behavior is typical for DAX calculated columns. One way to solve this problem is to use
the optional parameters in FIND. The third parameter specifies the number of character to start
the search from; if omitted, it is 1. The fourth parameter specifies the value to return in case
nothing is found. For example, return 0 if nothing is found:

Buying Group First Space Position No Error = FIND (" ", Customer[Buying Group], , 0)

In this case, you get no error. An alternative way to solve the same problem is to use the IF-
ERROR function, which takes two arguments: an expression to evaluate and a value to return in
case of an error. The following calculated column returns the same result as the previous one:

Buying Group First Space Position No Error = IFERROR (FIND (" ", Customer[Buying
Group]), 0)

To extract the first word from Buying Group, use the following formula:

Buying Group First Word = IFERROR (LEFT (Customer[Buying Group], FIND (" ",
Customer[Buying Group]) - 1), Customer[Buying Group])

There are two things to note about this formula. First, subtract 1 from the result of the FIND,
because DAX starts counting from 1, which is different from M. Second, this formula is quite
long and could benefit from formatting to make the code easier to read. There is a tool by
SQLBI called DAX Formatter, which helps you to make your code cleaner and easier to read.

NOTE DAX FORMATTER

It is a good practice to format your code. The DAX Formatter tool, which is updated regu-
larly to work with the newest functions, can be found at http://www.daxformatter.com/.

The set of rules according to which DAX Formatter adheres, can be found at https://www.
sqlbi.com/articles/rules-for-dax-code-formatting/.

The following code has been formatted with DAX Formatter:

Buying Group First Word =
IFERROR (
 LEFT (Customer[Buying Group], FIND (“ “, Customer[Buying Group]) - 1
),
 Customer[Buying Group]
)

The LEN function can also be useful when you want to calculate how many times a text
string appears in another text string. For this, use the SUBSTITUTE function.

The SUBSTITUTE function, which is case-sensitive, has three required parameters: text, old
text, and new text. For instance, replace all a’s with o’s in “Alabama.” As a result, you get “Alo-
bomo”:

Alobomo = SUBSTITUTE ("Alabama", "a", "o")

From the Library of zhanl mamykova

http://www.daxformatter.com/
https://www.sqlbi.com/articles/rules-for-dax-code-formatting/
https://www.sqlbi.com/articles/rules-for-dax-code-formatting/

ptg999

 116 CHAPTER 2 Modeling and visualizing data

Because SUBSTITUTE is case-sensitive, the first A is not affected. To count the number of
times a character appears in a string, substitute the character with an empty string and calcu-
late the difference in lengths of the old and the new strings. The following expression counts
the number of times the capital letter “T” appears in the Buying Group column values:

Number of T's =
LEN (Customer[Buying Group])
 - LEN (SUBSTITUTE (Customer[Buying Group], "T", ""))

To count the number of times the letter “t” appeared regardless of case, you can either use
another SUBSTITUTE or use LOWER or UPPER. The following three formulas provide identical
results, and it shows that in DAX there is often more than one way to solve the same problem:

// Using second SUBSTITUTE

Number of all T's =
LEN (Customer[Buying Group])
 - LEN (SUBSTITUTE (SUBSTITUTE (Customer[Buying Group], "t", ""), "T", ""))

// Using LOWER

Number of all T's =
LEN (Customer[Buying Group])
 - LEN (SUBSTITUTE (LOWER (Customer[Buying Group]), "t", ""))

// Using UPPER

Number of all T's =
LEN (Customer[Buying Group])
 - LEN (SUBSTITUTE (UPPER (Customer[Buying Group]), "T", ""))

The Number of T’s and Number of all T’s columns provide the following results, shown in
Table 2-10.

TABLE 2-10 Comparison of the Number of T’s and Number of all T’s columns

Buying Group Number of T’s Number of all T’s

N/A 0 0

Tailspin Toys 2 2

Wingtip Toys 1 2

MORE INFO TEXT DAX FUNCTIONS

For more information on the available text functions in DAX, see “Text Functions (DAX)” at:
https://msdn.microsoft.com/en-us/library/ee634938.aspx.

DAX has several mathematical functions available, many of which are similar to the Excel
functions with which they share their names. In the following list, you can see how some of the
most common mathematical DAX functions work.

From the Library of zhanl mamykova

https://msdn.microsoft.com/en-us/library/ee634938.aspx

ptg999

 Skill 2.2: Create calculated columns, calculated tables, and measures CHAPTER 2 117

 ■ ABS(Number) Returns the absolute value of a number.

 ■ DIVIDE(Numerator, Denominator, AlternateResult) Safe division function that can
handle division by zero.

 ■ EXP(Number) Returns e raised to the power of a number.

 ■ EVEN(Number) Returns a number rounded up to the nearest even number. You can
check if a number is even using the ISEVEN function.

 ■ ODD(Number) Returns a number rounded up to the nearest odd number. You can
check if a number is odd using the ISODD function.

 ■ FACT(Number) Returns the factorial of a number.

 ■ LN(Number) Returns the natural logarithm of a number.

 ■ LOG(Number, Base) Returns the logarithm of a number to the base you specify.

 ■ MOD(Number, Divisor) Returns the remained of a number divided by a divisor.

 ■ PI() Returns the number Pi, accurate to 15 digits.

 ■ POWER(Number, Power) Returns the result of a number raised to a power. This is the
function equivalent of the exponentiation (̂) operator.

 ■ QUOTIENT(Numerator, Denominator) Returns the integer portion of a division.

 ■ SIGN(Number) Returns -1 if a number is negative, 1 if it is positive, and 0 if it is zero.

 ■ ROUNDDOWN(Number, NumberOfDigits) Rounds a number towards zero to a speci-
fied number of decimal places.

 ■ FLOOR(Number, Significance) Rounds a number toward zero to the nearest multiple
of significance.

 ■ TRUNC(Number, NumberOfDigits) Truncates a number, keeping the specified number
of decimal places.

 ■ ROUND(Number, NumberOfDigits) Rounds a number to a specified number of deci-
mal places.

 ■ MROUND(Number, Multiple) Rounds a number to the nearest multiple.

 ■ ROUNDUP(Number, NumberOfDigits) Rounds a number towards zero to a specified
number of decimal places.

 ■ CEILING(Number, Significance) Rounds a number towards zero to the nearest mul-
tiple of significance.

 ■ INT(Number) Rounds a number down to the nearest integer.

 ■ RAND() Returns a random number greater than or equal to 0 and less than 1.

 ■ RANDBETWEEN(Bottom, Top) Returns a random integer between two specified
numbers.

 ■ SQRT(Number) Returns the square root of a number.

From the Library of zhanl mamykova

ptg999

 118 CHAPTER 2 Modeling and visualizing data

MORE INFO MATHEMATICAL DAX FUNCTIONS

For more information on the available mathematical and trigonometric functions in DAX, see
“Math and Trig Functions (DAX)” at: https://msdn.microsoft.com/en-us/library/ee634241.aspx.

The date and time functions in DAX help you create calculations based on dates and time.
The following list shows some of the most common date and time functions.

 ■ TODAY() Returns the current system date in datetime format.

 ■ NOW() Returns the current system date and time in datetime format.

 ■ DATE(Year, Month, Day) Returns the specified date in datetime format.

 ■ DATEVALUE(TextDate) Converts a text date to a date in datetime format.

 ■ YEAR(Date) Returns the year portion of a date.

 ■ MONTH(Date) Returns the month number of a date.

 ■ DAY(Date) Returns the day number of a date.

 ■ TIME(Hour, Minute, Second) Returns the specified time in datetime format.

 ■ TIMEVALUE(TextTime) Converts a text time to time in datetime format.

 ■ HOUR(Datetime) Returns the hour of a datetime.

 ■ MINUTE(Datetime) Returns the minute of a datetime.

 ■ SECOND(Datetime) Returns the second of a datetime.

 ■ DATEDIFF(StartDate, EndDate, Interval) Returns the number of intervals between two
dates. The interval can be any of the following: SECOND, MINUTE, HOUR, DAY, WEEK,
MONTH, QUARTER, YEAR.

 ■ EDATE(Date, Months) Shifts a date back or forward by a specified number of months.

 ■ EOMONTH(Date, Months) Returns the end of month date of a specified date, shifted
by a specified number of months.

 ■ WEEKDAY(Date, ReturnType) Returns the number of the day of the week according to
the specified ReturnType.

 ■ WEEKNUM(Date, ReturnType) Returns the week number in the year according to the
specified ReturnType.

MORE INFO DATE AND TIME DAX FUNCTIONS

For more information on the available date and time functions in DAX, see “Date and Time
Functions (DAX)” at: https://msdn.microsoft.com/en-us/library/ee634786.aspx.

Using LOOKUPVALUE
If there is a many-to-one relationship between two tables, you can bring a related value from
the one side to the many side with RELATED, as discussed earlier in the chapter. With LOOK-
UPVALUE, it is possible to look up values from another table based on one or more conditions.

From the Library of zhanl mamykova

https://msdn.microsoft.com/en-us/library/ee634241.aspx
https://msdn.microsoft.com/en-us/library/ee634786.aspx

ptg999

 Skill 2.2: Create calculated columns, calculated tables, and measures CHAPTER 2 119

This is especially useful when there are two or more conditions to look up by because DAX
allows creating physical relationships based on one column only.

LOOKUPVALUE uses the following syntax: column to retrieve values from, followed by pairs
of arguments, in which the first item is a column to search, and the second item is a scalar
expression to look for. If there is no match, a blank value is returned. In case there are multiple
values that match the same condition, an error is returned.

For review purposes, use the following example. In the Sale table, you can insert values from
the Target table using the following formula.

Target Quantity =
LOOKUPVALUE (
 Target[Target Quantity],
 Target[Calendar Year], RELATED ('Date'[Calendar Year]),
 Target[Bill To Customer], RELATED (Customer[Bill To Customer])
)

Note that this particular calculated column does not provide useful results because the
granularity of the Sale and Target tables are different, but LOOKUPVALUE can nonetheless be
useful in situations where the granularity of tables is the same or does not matter. Also note
that the following formula, that is not specific enough, does not work and results in an error
shown in Figure 2-13.

Target Quantity =
LOOKUPVALUE (
 Target[Target Quantity],
 Target[Calendar Year], RELATED ('Date'[Calendar Year])
)

FIGURE 2-13 LOOKUPVALUE that results in error

From the Library of zhanl mamykova

ptg999

 120 CHAPTER 2 Modeling and visualizing data

MORE INFO LOOKING UP VALUES IN DAX

There are other techniques for looking up values in DAX that you may want to consider. For
a comprehensive discussion, see an article by Marco Russo, “Lookup multiple values in DAX”
at: https://www.sqlbi.com/articles/lookup-multiple-values-in-dax/.

Grouping values
Calculated columns can be very useful for grouping values. For instance, if you have a column
with unit prices, such as ‘Stock Item’[Unit Price], you may want to put them into Low, Medium,
and High categories based on business requirements. The column contains 58 distinct values.
Let’s say that items under $100 can be placed in the “Low” category, items from $100 to $1,000
can be placed into the “Medium” category, and the rest can be placed into the “High” category.

One way to do it would be by using the IF function. IF, like many other DAX functions, can
be nested. The following calculated column produces the necessary grouping:

Price Category =
IF (
 'Stock Item'[Unit Price] < 100,
 "Low",
 IF (
 'Stock Item'[Unit Price] < 1000,
 "Medium",
 "High"
)
)

If you use this calculated column in a visual, you will notice that the values are sorted in
alphabetic order: High, Low, Medium. To solve this problem, try the following code:

Price Category Number =
IF (
 'Stock Item'[Price Category] = "Low",
 1,
 IF (
 'Stock Item'[Price Category] = "Medium",
 2,
 3
)
)

An alternative way to produce the same column is to use the SWITCH function. The first pa-
rameter in this function is an expression to be evaluated multiple times. The other parameters
come in pairs: a value to evaluate against the expression, and a result to return in case the value
and the expression match. The last argument, which is optional, is the result to return in case
no value matched the expression.

The following formula returns the same results as the previous formula:

Price Category Number = SWITCH ('Stock Item'[Price Category], "Low", 1, "Medium", 2, 3
)

From the Library of zhanl mamykova

https://www.sqlbi.com/articles/lookup-multiple-values-in-dax/

ptg999

 Skill 2.2: Create calculated columns, calculated tables, and measures CHAPTER 2 121

Once you create the column using either approach and try to sort the Price Category col-
umn by Price Category Number, you will get the error shown in Figure 2-14.

FIGURE 2-14 Sort by another column error

This error message appears because you are trying to sort the Price Category column by
a column that derives its values from Price Category. Note that you can sort Price Category
Number by Price Category. This problem can be fixed in at least two ways. One way is to create
the two calculated columns in reverse order.

// First, create Price Category Number

Price Category Number =
IF (
 'Stock Item'[Unit Price] < 100,
 1,
 IF (
 'Stock Item'[Unit Price] < 1000,
 2,
 3
)
)

// Second, create Price Category

Price Category = SWITCH ('Stock Item'[Price Category Number], 1, "Low", 2, "Medium",
"High")

Now the Price Category column can be sorted by the Price Category Number column with-
out any errors. An alternative approach is to write the two calculated columns in the same way
so that both of them reference the Unit Price column without referencing each other:

// The order of creation does not matter in this case

Price Category =
IF (
 'Stock Item'[Unit Price] < 100,
 "Low",
 IF (
 'Stock Item'[Unit Price] < 1000,
 "Medium",
 "High"
)
)

From the Library of zhanl mamykova

ptg999

 122 CHAPTER 2 Modeling and visualizing data

Price Category Number =
IF (
 'Stock Item'[Unit Price] < 100,
 1,
 IF (
 'Stock Item'[Unit Price] < 1000,
 2,
 3
)
)

In this way, you can also sort the Price Category column by the Price Category Number
column without any problem.

The SWITCH function is especially useful when there are many conditions to check. For
instance, if you decide to group unit prices into five categories, use four IF statements:

Five Price Categories =
IF (
 'Stock Item'[Unit Price] < 10,
 "Very Low",
 IF (
 'Stock Item'[Unit Price] < 100,
 "Low",
 IF (
 'Stock Item'[Unit Price] < 200,
 "Medium",
 IF (
 'Stock Item'[Unit Price] < 1000,
 "High",
 "Very High"
)
)
)
)

With SWITCH, you can use the SWITCH TRUE pattern to check Boolean statements:

Five Price Categories SWITCH =
SWITCH (
 TRUE (),
 'Stock Item'[Unit Price] < 10, "Very Low",
 'Stock Item'[Unit Price] < 100, "Low",
 'Stock Item'[Unit Price] < 200, "Medium",
 'Stock Item'[Unit Price] < 1000, "High",
 "Very High"
)

You can also group values with the user interface. To group the Unit Price values, select
the column in the Fields pane, then select Modeling > Groups > New Group. The Groups
window, shown in Figure 2-15, will then open, where you can specify the settings for grouping,
also called binning.

From the Library of zhanl mamykova

ptg999

 Skill 2.2: Create calculated columns, calculated tables, and measures CHAPTER 2 123

FIGURE 2-15 The Groups window with Bin selected as group type

Power BI analyzes the values in the column and chooses the group type that it deems best
for the selected column. Because we have numeric values in Unit Price, Power BI decided that
it’s best to group the values into bins. Power BI gave the new column a default name, Unit Price
(bins), which can be changed.

There are two bin types available: Size of Bins and Number of Bins. For size of bins, Power BI
determines the best bin size, which can be adjusted. In our case, Power BI deemed 105.5 to be
the best bin size. If necessary, you can reset the bin size to its default. If you click OK with de-
fault settings, Power BI will create a calculated column in which unit prices are rounded down
to the nearest multiple of 105.5.

In this specific case, the new column will contain five distinct values:

 ■ $0

 ■ $105.50

 ■ $211

 ■ $316.50

 ■ $1,899

Internally, Power BI uses the following formula:

Unit Price (bins) =
IF (
 ISBLANK ('Stock Item'[Unit Price]),
 BLANK (),
 IF (

From the Library of zhanl mamykova

ptg999

 124 CHAPTER 2 Modeling and visualizing data

 'Stock Item'[Unit Price] >= 0,
 ROUNDDOWN ('Stock Item'[Unit Price] / 105.5, 0) * 105.5,
 ROUNDUP ('Stock Item'[Unit Price] / 105.5, 0) * 105.5
)
)

Note that this calculated column has a special icon next to it: two overlapping squares. This
is different from the icons shown with other calculated columns that we have created so far.
You can see the Unit Price (bins) icon in Figure 2-16.

FIGURE 2-16 The Unit Price (bins) column in the fields list

The other calculated columns have either of two icons:

 ■ When a column is of a numeric data type, such as the Price Category Number column, it
has a calculated column icon with a capital sigma.

 ■ When a column is of other data type text, like the Price Category column, it has a calcu-
lated column icon with fx written on it.

Even though technically Unit Price (bins) is a calculated column, it is not possible to see and
modify its formula with Power BI Desktop. Instead, you can edit the group by selecting the
column and selecting Modeling > Groups > Edit Groups. The Groups window will then open
where you make changes, but you will not be able to change the group type.

If you choose to change the Bin Type to Number of Bins, you will need to specify the num-
ber of bins, which, for the Unit Price column, Power BI set to 18 by default. When you edit the
Bin Count field, Power BI will show you the approximate bin size; for the default 18 bins, the bin
size is 105.5. You can see the Groups dialog box in Figure 2-17.

From the Library of zhanl mamykova

ptg999

 Skill 2.2: Create calculated columns, calculated tables, and measures CHAPTER 2 125

FIGURE 2-17 Groups window with Number of Bins selected as Bin Type

Grouping Unit Price by number of bins results in the following five distinct values, which are
different from groups based on bin size:

 ■ $0

 ■ $105.50

 ■ $211

 ■ $316.50

 ■ $1,793.50

When you create a new group, you can also choose the List group type. If you choose List in
the Group type drop-down list, the Groups window interface will change, allowing you to pick
values and group them. The Groups dialog box with List group type selected can be seen in
Figure 2-18.

From the Library of zhanl mamykova

ptg999

 126 CHAPTER 2 Modeling and visualizing data

FIGURE 2-18 Groups window with List group type

In this dialog box, you can either group items individually, resulting in single-item groups,
or you can select multiple values at once by holding the Ctrl key. Holding the Shift key allows
you to select a range of values. Once you select some values and click the Group button, the
values are transferred to the list on the right, Groups and members, and you can specify a new
name for each group. By default, every group is given a name that is the list of values sepa-
rated by ampersands. Below the Groups and members list, the Include Other group check box
enables you to create the Other group, which contains all ungrouped values. If you choose not
to include the Other group, ungrouped values will be left as-is.

MORE INFO GROUPING AND BINNING IN POWER BI DESKTOP

For more information and examples on the grouping and binning feature in Power BI Desk-
top, see “Use grouping and binning in Power BI Desktop” at https://docs.microsoft.com/en-
us/power-bi/desktop-grouping-and-binning.

Using variables in calculated columns
By using variables in DAX, you can write more readable and concise code. For example, let’s
say you want to define a discounted unit price that includes tax, but if the new price is less than
$20, then you keep the old price, including tax. The discount rate is 20 percent. One way to
write this formula is as follows.

From the Library of zhanl mamykova

https://docs.microsoft.com/en-us/power-bi/desktop-grouping-and-binning
https://docs.microsoft.com/en-us/power-bi/desktop-grouping-and-binning

ptg999

 Skill 2.2: Create calculated columns, calculated tables, and measures CHAPTER 2 127

New Price =
IF (
 Sale[Unit Price]
 * (1 + Sale[Tax Rate] / 100)
 * 0.8
 < 20,
 Sale[Unit Price]
 * (1 + Sale[Tax Rate] / 100),
 Sale[Unit Price]
 * (1 + Sale[Tax Rate] / 100)
 * 0.8
)

Note that the formula contains repeated code. If we rewrite the formula with variables, it
will become easier to read. The general pattern for using variables is as follows:

Measure name =
VAR FirstVariable = … // DAX expression
VAR NthVariable = … // DAX expression
RETURN = … // DAX expression

The names of variables cannot include spaces or be reserved keywords, such as Measure.
You can reference previously declared variables inside variables. The variables can only be ac-
cessed in the expression they are defined in; you cannot access variables defined in column A
from column B, for example.

If we rewrite the New Price formula with variables, it may look as follows:

New Price =
VAR TaxPct = Sale[Tax Rate] / 100
VAR PriceInclTax = Sale[Unit Price] * (1 + TaxPct)
VAR DiscountedPriceInclTax = PriceInclTax * 0.8
RETURN
 IF (
 DiscountedPriceInclTax < 20,
 PriceInclTax,
 DiscountedPriceInclTax
)

MORE INFO DAX VARIABLES

For more examples and information on using variables in DAX, see the official documenta-
tion articles: “VAR (DAX)” at: https://msdn.microsoft.com/en-us/library/mt243785.aspx, and
“Using variables in DAX expressions” at https://docs.microsoft.com/en-us/power-bi/guided-
learning/introductiontodax#step-4.

See also an article by Matt Allington, “Using Variables in DAX” at https://exceleratorbi.com.
au/using-variables-dax/.

Another way to solve the problem of repetitive code in calculated columns is to split inter-
mediate calculations in different columns. For instance, you can instead create four calculated
columns as follows.

From the Library of zhanl mamykova

https://msdn.microsoft.com/en-us/library/mt243785.aspx
https://docs.microsoft.com/en-us/power-bi/guided-learning/introductiontodax#step-4
https://docs.microsoft.com/en-us/power-bi/guided-learning/introductiontodax#step-4
https://exceleratorbi.com.au/using-variables-dax/
https://exceleratorbi.com.au/using-variables-dax/

ptg999

 128 CHAPTER 2 Modeling and visualizing data

LISTING 2-8 Calculated columns

TaxPct = Sale[Tax Rate] / 100

PriceInclTax = Sale[Unit Price] * (1 + Sale[TaxPct])

DiscountedPriceInclTax = Sale[PriceInclTax] * 0.8

New Price =
IF (
 Sale[DiscountedPriceInclTax] < 20,
 Sale[PriceInclTax],
 Sale[DiscountedPriceInclTax]
)

While this approach results in the same values as the previous New Price formulas, it has
an important drawback: increased data model size. Every calculated column is materialized,
resulting in greater file size. Because Power BI uses VertiPaq, an in-memory engine, calculated
columns also occupy RAM space. The size of a calculated column depends on the number of its
distinct values, so some columns may take more space than others.

Evaluation context
Most functions that we have reviewed so far were executed in so-called row context. Row con-
text can be thought of as the current row. When you define a calculated column, its formula is
evaluated for each row of a table to which the column is added. Some table and aggregation
functions, such as FILTER and SUMX, iterate over tables and, as a result, also use row context.

Some functions ignore row context, and they use filter context instead. Filter context can
be thought of as all the filters that are applied to a calculation. Filters can come from several
places: visual-, page-, and report-level filters; axes in a visual; slicers; rows and columns in the
Matrix visual; and more. For example, when you create a bar chart with Calendar Year Label on
the axis and Profit in values, like in Figure 2-19, then each Calendar Year Label provides filter
context for its Profit values, and as a result, each bar is different. Filters can also be applied
programmatically with DAX.

IMPORTANT SORT BY COLUMN AND FILTER CONTEXT

Columns used for sorting are part of filter context. For example, if you show Profit by
Month, and you sort Month by Month Number, then Month Number is also part of filter
context.

From the Library of zhanl mamykova

ptg999

 Skill 2.2: Create calculated columns, calculated tables, and measures CHAPTER 2 129

FIGURE 2-19 Bar chart showing Profit by Calendar Year Label

The two contexts always co-exist at the same time, though either of them can be empty
at certain times. For instance, when you define a calculated column in a physical table with a
formula that uses no functions, the filter context is empty.

Functions that ignore row context include, but not limited to, SUM, AVERAGE, and COUN-
TROWS. To review the effect of a using a formula that ignores the row context, we can create a
calculated column in the Scale table with the following formula:

Sum of Scale = SUM (Scale[Scale])

The resulting column can be seen in Figure 2-20.

FIGURE 2-20 Sum of Scale calculated column

Note that the new column has the same value for each row because SUM works in filter
context and ignores row context. In other words, SUM calculates its values irrespective of what
the current row’s value in the Scale[Scale] column is.

From the Library of zhanl mamykova

ptg999

 130 CHAPTER 2 Modeling and visualizing data

By default, row context ignores any relationships that are in place unless you use the RE-
LATED or RELATEDTABLE functions. You can only leverage the effect of relationships between
tables using filter context. It is possible to transform row context into equivalent filter context.
For this purpose, we can use the CALCULATE function, which has one required parameter: an
expression that works in filter context. This function can also take optional filter arguments,
which we are going to review later in this chapter. At this time, we are going to focus on context
transition capability of CALCULATE. To see the effect of context transition, create the following
calculated column:

Sum of Scale Calculate = CALCULATE (SUM (Scale[Scale]))

Note that writing CALCULATE (Scale[Scale]) results in an error because Scale[Scale] can
only work in row context. The reason why you cannot use Scale[Scale] in filter context is that
DAX does not know what you want to do with values in the column. Do you want to sum the
value, take an average of them, or something else? The Sum of Scale Calculate column is shown
in Figure 2-21.

FIGURE 2-21 Sum of Scale Calculate column

When context transition happens, the row context is transformed into equivalent filter
context. This means that for each row, a table is filtered to contain only those rows where the
values are the same as in the current row. For example, when we define the Sum of Scale Cal-
culate calculated column with CALCULATE and context transition happens, in the first row the
following filter context is applied: Scale[Scale] = 1 and Scale[Sum of Scale] = 1001001. For the
Scale rows that remain after filtering, SUM (Scale[Scale]) is performed. Therefore, every row
contains a different value in the Sum of Scale Calculate column.

MORE INFO CONTEXT TRANSITION

For more examples and details on context transition in DAX, see an article by Alberto Fer-
rari: “Understanding Context Transition” at: https://www.sqlbi.com/articles/understanding-
context-transition/.

From the Library of zhanl mamykova

https://www.sqlbi.com/articles/understanding-context-transition/
https://www.sqlbi.com/articles/understanding-context-transition/

ptg999

 Skill 2.2: Create calculated columns, calculated tables, and measures CHAPTER 2 131

It’s important to remember that the current row and the equivalent filter context are not
the same thing. To review an example that highlights the difference, add a duplicate row to the
Scale table. To do that, follow these steps:

1. Right-click on the Scale table in the Fields list and select Edit Query.

2. In Power Query Editor, click on the gear icon next to the Source step.

3. Type 1 in the fourth row and click OK.

4. Click Close & Apply.

You can see the results in Figure 2-22.

FIGURE 2-22 Resulting Sum of Scale Calculate values with duplicate rows

Note that the rows in which Scale = 1 has the Sum of Scale Calculate value of 2. For these
rows, here are the steps that DAX followed to arrive at these figures:

1. Identify the row context: Scale = 1, Sum of Scale = 1001002.

2. Convert the row context into the equivalent filter context: filter the Scale table and keep
only those rows where Scale = 1 and Sum of Scale = 1001002.

3. For the two rows that remain, sum the values in the Scale column: 1 + 1 = 2.

4. Return the result of the summation, which is 2.

Because there are two identical rows, DAX follows the same procedure twice. The filter
context cannot distinguish between identical rows, and as a result, the Sum of Scale Calculate
values are not the same as the Scale column values.

Earlier in this chapter, we defined the following two columns in the Date table:

// Returns different values for each row

Sales # = COUNTROWS (RELATEDTABLE (Sale))

// Returns different values only with bidirectional filtering enabled

Cities # = COUNTROWS (RELATEDTABLE (City))

From the Library of zhanl mamykova

ptg999

 132 CHAPTER 2 Modeling and visualizing data

The reason why these calculated columns returned different values is that RELATEDTABLE
is an alias for CALCULATETABLE, a sister function of CALCULATE, which works similarly, but
receives a table expression as the first parameter instead of a scalar expression. Therefore, for
each row in the Date table, context transition occurred, which filtered the Sale and City tables
to only those rows that were related to the current row.

MORE INFO DAX EVALUATION CONTEXTS

For a general overview of evaluation contexts in DAX, see an article in the official documen-
tation, “DAX basics in Power BI Desktop” at https://docs.microsoft.com/en-us/power-bi/
desktop-quickstart-learn-dax-basics.

Full details on evaluation contexts in DAX are outside of the scope of this book, but it's im-
portant to understand this topic well to write correct DAX formulas. For more details on the
topic, see a sample chapter from “The Definitive Guide to DAX: Business intelligence with
Microsoft Excel, SQL Server Analysis Services, and Power BI,” a book by Alberto Ferrari and
Marco Russo, “Understanding Evaluation Contexts in DAX” at https://www.microsoftpresss-
tore.com/articles/article.aspx?p=2449191.

Circular dependencies in calculated columns
DAX evaluates every expression and does so in the order that respects every dependency of
one expression on another. To understand circular dependencies, first review with the follow-
ing calculated column in the Stock Item table:

Profit $ = 'Stock Item'[Recommended Retail Price] - 'Stock Item'[Unit Price]

Profit % = DIVIDE ('Stock Item'[Profit $], 'Stock Item'[Unit Price])

Note that the Profit % column references and depends on the Profit $ column. At this point,
we can attempt to change the Profit $ column formula to the following one:

Profit $ = 'Stock Item'[Profit %] * 'Stock Item'[Unit Price]

Using this formula results in a circular dependency error: “A circular dependency was de-
tected: Stock Item[Profit %], Stock Item[Profit $], Stock Item[Profit %].” This is because Profit %
depends on Profit $, which also depends on Profit % to calculate its value. As a result, neither
column can be calculated.

You can now remove both columns and go to the Scale table, where you have previously
added the following column:

Sum of Scale Calculate = CALCULATE (SUM (Scale[Scale]))

For clarity purposes, rename it to Calculate1 and remove the Sum of Scale column, keeping
only Scale and Calculate1 columns. Now, try to add the following column to the Scale table:

Calculate2 = CALCULATE (SUM (Scale[Scale]))

From the Library of zhanl mamykova

https://docs.microsoft.com/en-us/power-bi/desktop-quickstart-learn-dax-basics
https://docs.microsoft.com/en-us/power-bi/desktop-quickstart-learn-dax-basics
https://www.microsoftpressstore.com/articles/article.aspx?p=2449191
https://www.microsoftpressstore.com/articles/article.aspx?p=2449191

ptg999

 Skill 2.2: Create calculated columns, calculated tables, and measures CHAPTER 2 133

Note that this formula is the same as the Calculate1 column formula, and neither column
references the other. At the same time, we get the circular dependency error: “A circular de-
pendency was detected: Scale[Calculate1], Scale[Column], Scale[Calculate1].”

The reason why this happens lies in context transition. When DAX evaluates Calculate1, it
converts the row context into equivalent filter context: it filters the Scale table to those rows
where Scale and Calculate2 column values are the same as the values of the current row. For
Calculate2, it keeps those Scale rows where Scale and Calculate1 column values are the same as
current row values. Therefore, Calculate1 implicitly depends on Calculate2 and vice versa.

This situation happens in tables in which there is no column that is used as a primary key.
In our case, the Scale column can be used as a primary key, because it contains unique values
only. When a column is used as a primary key, DAX performs context transition differently: be-
cause it knows it can rely on the column having unique values, it uses this column to filter the
table during context transition, without using values from other columns. For the Scale table, it
means that during context transition DAX will only look at the Scale column values to filter the
table.

The circular dependency issue can be fixed by creating a relationship between the Scale
table and any other table with Scale being on the one side of the relationship. For review pur-
poses, follow a technique developed by Marco Russo: introduce a dummy fact table and relate
it to the Scale table. To fix the error, follow these steps:

1. Select Home > External data > Get Data > Blank Query.

2. Rename the query to ScaleDummyFact.

3. Open Advanced Editor by clicking Home > Query > Advanced Editor.

4. Replace all code with the following:

#table (
 type table [Scale = Int64.Type],
 {}
)

5. Click Done >Close & Apply.

6. Create a relationship between Scale[Scale] and ScaleDummyFact[Scale]. The type of re-
lationship does not matter as long as Scale[Scale] is on the one side of the relationship.

7. If necessary, go to Calculate2 formula and press Enter, prompting Power BI to re-evalu-
ate the column.

MORE INFO CIRCULAR DEPENDENCIES IN DAX

For more details on circular dependencies in DAX, see two articles by Alberto Ferrari: “Un-
derstanding Circular Dependencies in Tabular and PowerPivot” at https://www.sqlbi.com/
articles/understanding-circular-dependencies/, and “Avoiding circular dependency errors in
DAX” at https://www.sqlbi.com/articles/avoiding-circular-dependency-errors-in-dax/.

From the Library of zhanl mamykova

https://www.sqlbi.com/articles/understanding-circular-dependencies/
https://www.sqlbi.com/articles/understanding-circular-dependencies/
https://www.sqlbi.com/articles/avoiding-circular-dependency-errors-in-dax/

ptg999

 134 CHAPTER 2 Modeling and visualizing data

At this stage, delete the calculated columns in the Scale table and remove the ScaleDum-
myFact table.

MORE INFO CALCULATED COLUMNS IN POWER BI DESKTOP

Calculated columns can help you to enrich your data models by using DAX, which is better
suited for certain tasks compared to M. To learn more about calculated columns, you can
refer to the official documentation page, “Using calculated columns in Power BI Desktop” at
https://docs.microsoft.com/en-us/power-bi/desktop-calculated-columns, and “Tutorial: Cre-
ate calculated columns in Power BI Desktop” at https://docs.microsoft.com/en-us/power-bi/
desktop-tutorial-create-calculated-columns.

For a video overview on creating calculated columns, see “Create calculated columns” at
https://docs.microsoft.com/en-us/power-bi/guided-learning/modeling#step-3.

Calculated tables
As previously mentioned, some DAX functions return tables. Table expressions can be used
inside formulas of calculated columns and measures, as well as by themselves to materialize
calculated tables. You can create a calculated table by selecting Modeling > Calculations >
New Table. You will then need to write a DAX formula for a table in the formula bar.

MORE INFO CREATING CALCULATED TABLES

For a video overview on how to create calculated tables, see “Create calculated tables” at
https://docs.microsoft.com/en-us/power-bi/guided-learning/modeling#step-6.

One way to create a calculated table is to duplicate an existing one. For example, you can
duplicate the Date table:

Date Duplicate = 'Date'

Because Date is a reserved keyword, you need to enclose it in single quotation marks.

The technique of duplicating tables can be useful if you want to separate multiple relation-
ships between two tables—for example, between Sale and Date.

FILTER
By using FILTER, you can filter a table based on specified condition. The FILTER function takes
two arguments: a table expression and a filter condition. The filter condition is evaluated in
row context for each row of the table. For example, create a calculated table for stock items in
which unit price is greater than $300. Use the following formula shown in Listing 2-9.

From the Library of zhanl mamykova

https://docs.microsoft.com/en-us/power-bi/desktop-calculated-columns
https://docs.microsoft.com/en-us/power-bi/desktop-tutorial-create-calculated-columns
https://docs.microsoft.com/en-us/power-bi/desktop-tutorial-create-calculated-columns
https://docs.microsoft.com/en-us/power-bi/guided-learning/modeling#step-3
https://docs.microsoft.com/en-us/power-bi/guided-learning/modeling#step-6

ptg999

 Skill 2.2: Create calculated columns, calculated tables, and measures CHAPTER 2 135

LISTING 2-9 Expensive Stock Item calculated table with FILTER

Expensive Stock Items =
FILTER (
 'Stock Item',
 'Stock Item'[Unit Price] > 300
)

This formula creates a table with six rows. Note that if you had calculated columns in the
Stock Item table, those columns would appear as native columns in the Expensive Stock Items
table.

Although FILTER takes only one condition, you can combine the conditions into a single
Boolean condition with AND or OR logic. For instance, if you want to select only those stock
items that are more expensive than $300 or are gray, so you can write the following formula
shown in Listing 2-10.

LISTING 2-10 Expensive or Gray Stock Item calculated table

Expensive or Gray Stock Items =
FILTER (
 'Stock Item',
 OR (
 'Stock Item'[Unit Price] > 300,
 'Stock Item'[Color] = "Gray"
)
)

We would get 15 rows in this case.

Unlike CALCULATETABLE, FILTER does not trigger context transition. The following two
calculated columns, created in the Date table, produce different results:

// Different value for each row

Countrows Calculatetable = COUNTROWS (CALCULATETABLE (Sale))

// Same number for each row

Countrows Filter = COUNTROWS (FILTER (Sale, TRUE ()))

Note that while CALCULATETABLE has only one mandatory parameter, FILTER always uses
two parameters.

When you use FILTER in context transition—for example, in a calculated column—it gener-
ates new row context. This means that in each row of the table where we create a calculated
column, DAX iterates over each row in the table used inside FILTER. It is possible to access
the original row context from the new one with the EARLIER function. Doing so allows you to
perform calculations in a way similar to SUMIF in Excel. For instance, you can count the number
of rows in the Date table for each month in the following calculated column formula shown in
Listing 2-11.

From the Library of zhanl mamykova

ptg999

 136 CHAPTER 2 Modeling and visualizing data

LISTING 2-11 Days in Month calculated column with EARLIER

Days in Month EARLIER =
COUNTROWS (
 FILTER (
 'Date',
 'Date'[Calendar Month Label]
 = EARLIER ('Date'[Calendar Month Label])
)
)

The same effect can be achieved by using a variable instead of EARLIER. Because variables
always stay constant after being evaluated, they are not affected by the new context. In a way,
variables behave like constants. This behavior will be reviewed again later in the chapter. You
can see an example of using a variable in Listing 2-12.

LISTING 2-12 Days in Month calculated column with VAR

Days in Month VAR =
VAR CurrentMonth = 'Date'[Calendar Month Label]
RETURN
 COUNTROWS (
 FILTER (
 'Date',
 'Date'[Calendar Month Label] = CurrentMonth
)
)

If needed, you can perform context transition inside FILTER. For example, you can create a
calculated table for salespeople who have made over 5,000 sales:

Productive Salespeople =
FILTER (
 Employee,
 CALCULATE (COUNTROWS (Sale)) > 5000
)

IMPORTANT CONTEXT TRANSITION AND FILTERING

It is important to remember that when you perform context transition in large tables, the
operation is much slower than filtering column values. Therefore, instead of filtering a table
and doing context transition, it is advisable to pre-calculate the results in a calculated col-
umn and then filter by the column.

ALL
The ALL function removes any filters that were placed on a table or columns. This function can
also be used to create calculated tables. The function accepts either a table as an argument or
one or more columns from one table. The ALL function cannot accept another function as an
argument. When you use a table as an argument for ALL, every row, including duplicated rows,
is returned in the new table. When you use one column in ALL, a one-column table containing

From the Library of zhanl mamykova

ptg999

 Skill 2.2: Create calculated columns, calculated tables, and measures CHAPTER 2 137

distinct values from the column is returned. When you use multiple columns from the same
table in ALL, a table containing all existing combinations of the column values is returned. It is
not possible to use columns from different tables inside one ALL statement. Note that if a table
contains duplicate rows, then ALL with a table as the only argument and ALL with all columns
listed will return tables with a different number of rows.

For examples of using ALL to create calculated tables, create the following three tables:

All Stock Item = ALL ('Stock Item')

All Color = ALL ('Stock Item'[Color])

All Color, Buying Package = ALL ('Stock Item'[Color], 'Stock Item'[Buying Package])

 ■ The first table, All Stock Item, is a duplicate of the Stock Item table.

 ■ The second table, All Color, contains distinct values from the Color column from the
Stock Item table.

 ■ The third table, All Color, Buying Package, contains all existing distinct combinations of
the Color and Buying Package columns from the Stock Item table. This table is shown in
Figure 2-23.

FIGURE 2-23 All Color, Buying Package

From the Library of zhanl mamykova

ptg999

 138 CHAPTER 2 Modeling and visualizing data

To see the difference that ALL makes in filter context, create the following calculated col-
umns in the Customer table:

Customer Rows = COUNTROWS (Customer)

Customer Rows Calculate = CALCULATE (COUNTROWS (Customer))

Customer Rows Calculate All = CALCULATE (COUNTROWS (ALL (Customer)))

 ■ The first calculated column, Customer Rows, returns the total number of rows in the
Customer table. Because there is no context transition, you get the same value, the total
number of rows, for every row in the calculated column.

 ■ The second calculated column, Customer Rows Calculate, includes CALCULATE, which
triggers context transition. This means that for every row of the table, DAX counts only
those rows that have the same column values as the current row. Because there is a
primary key in this table, the result is always 1.

 ■ The third calculated column, Customer Rows Calculate All, also includes CALCULATE, but
it has Customer wrapped in ALL. Here is what happens: first, context transition trans-
forms the row context into equivalent filter context. Because we have a primary key in
the table, the Customer table for each row, is filtered to include that row only. Next, the
changes produced by filter placed on the Customer table are undone with ALL.

Note that the calculated columns, Customer Rows and Customer Rows Calculate All, return
the same value, 403, which is the total number of rows in the Customer table. These two values
are not always equivalent. As discussed earlier in this chapter, when a table on the many side of
a relationship includes some values that are not present in the table on the one side of a rela-
tionship, DAX adds a virtual row to the table on the one side. This row is blank and not visible
by default. To review this effect on our formulas, follow these steps:

1. In the Fields pane, right-click on the Customer table and select Edit Query.

2. Click on the AutoFilter button of the Customer Key column.

3. If necessary, click Load More in the bottom-right corner of the filter list.

4. De-select values 1, 2, and 3, and click OK.

5. Click Close & Apply.

Once the Customer table is updated, you can see different values in the Customer Rows and
Customer Rows Calculate All calculated columns: 400 and 401, respectively, as shown in Figure
2-24.

From the Library of zhanl mamykova

ptg999

 Skill 2.2: Create calculated columns, calculated tables, and measures CHAPTER 2 139

FIGURE 2-24 Customer Rows calculated columns

Note that the total number of rows in the Customer table is now 400, which can be seen
at the bottom of the screen. The Customer Rows Calculate All, however, displays 401, which
includes the virtual row that DAX included for those Customer Key values in the Sale table that
do not have a corresponding value in the Customer table.

You can see this row materialized if you create the following calculated table:

All Customer = ALL (Customer)

Note that this table has 401 rows, which includes the special blank row. Create a duplicate
of the Customer table without the blank row in at least three ways. First, reference the original
table without using any functions:

Duplicate Customer = Customer

Second, filter out the blank row:

Filter All Customer =
FILTER (
 ALL (Customer),
 NOT ISBLANK (Customer[Customer Key])
)

Third, use a variation of ALL – ALLNOBLANKROW:

AllNoBlankRow Customer = ALLNOBLANKROW (Customer)

From the Library of zhanl mamykova

ptg999

 140 CHAPTER 2 Modeling and visualizing data

The ALLNOBLANKROW function returns a table without the virtual blank row that is added
in cases in which a table on the many side contains values that are not in the table on the one
side. Note that if a table or a column contains a genuine blank row or value, the ALLNOBLANK-
ROW function will not filter it out. This function, like ALL, also removes any filters on a specified
table or columns.

At this stage, go back to Power Query Editor and remove the Filtered Rows step from the
Customer query.

The third variation of the ALL function, ALLEXCEPT, has a different syntax from ALL and
ALLNOBLANKROW: it receives a table as the first argument, followed by at least one column
to exclude. ALLEXCEPT returns all columns from a specified table except the excluded columns.
This function can be useful when you want to include more columns than you want to exclude.

Another application of the ALLEXCEPT function can be inside calculated columns to cal-
culate subtotals without using the combination of FILTER and EARLIER or VAR. Earlier in this
chapter, we created two calculated columns that calculated the number of rows in the Date
table for each month. The formulas of the columns can be seen in Listing 2-11 and Listing 2-12.
The following formula returns the equivalent results.

Days in Month ALLEXCEPT =
CALCULATE (
 COUNTROWS ('Date'),
 ALLEXCEPT (
 'Date',
 'Date'[Calendar Month Label]
)
)

MORE INFO ALLEXCEPT IN DAX

To learn more about ALLEXCEPT and when you should use it, see “Using ALLEXCEPT versus
ALL and VALUES” by Alberto Ferrari at https://www.sqlbi.com/articles/using-allexcept-ver-
sus-all-and-values/.

CALCULATETABLE
Earlier in the chapter, we encountered CALCULATETABLE when reviewing the RELATEDTABLE
function. The latter is an alias for the former when only one argument is used. In CALCULA-
TETABLE, you can specify optional conditions, which are combined with AND logic. CALCU-
LATETABLE accepts either tables or Boolean statements as filter conditions. Any table expres-
sion can be used in place of filters, including functions that return tables. The following is an
example of a Boolean filter condition:

'Stock Item'[Color] = "Black"

From the Library of zhanl mamykova

https://www.sqlbi.com/articles/using-allexcept-versus-all-and-values/
https://www.sqlbi.com/articles/using-allexcept-versus-all-and-values/

ptg999

 Skill 2.2: Create calculated columns, calculated tables, and measures CHAPTER 2 141

In the following example, we are reducing the number of rows in the Stock Item table, keep-
ing only those in which Unit Price is greater than $300:

Expensive Stock Items =
CALCULATETABLE (
 'Stock Item',
 'Stock Item'[Unit Price] > 300
)

Same as in Listing 2-9, we receive a table with six rows. Unlike FILTER, CALCULATETABLE can
accept more than one filter parameter. The following calculated table contains stock items that
are both black and priced higher than $300:

Expensive and Black Stock Items =
CALCULATETABLE (
 'Stock Item',
 'Stock Item'[Unit Price] > 300,
 'Stock Item'[Color] = "Black"
)

It is possible to combine filter conditions with OR logic instead of AND logic using either the
OR function or double pipe operator. For example, the following calculated table will filter the
Stock Item table to contain only those items that are priced either below $1 or above $1000, but
not at $0:

Stock Items below $1 or above $1000 =
CALCULATETABLE (
 'Stock Item',
 OR (
 'Stock Item'[Unit Price] < 1,
 'Stock Item'[Unit Price] > 1000
),
 'Stock Item'[Unit Price] <> 0
)

When you combine filters using the OR logic, the filters that you specify must be applied to
one column only. The following calculated table, which is an attempt to reproduce the Expen-
sive or Gray Stock Item calculated table from Listing 2-10, will result in an error:

Expensive or Gray Stock Item Wrong =
CALCULATETABLE (
 'Stock Item',
 OR (
 'Stock Item'[Unit Price] > 300,
 'Stock Item'[Color] = "Gray"
)
)

The error message can be seen in Figure 2-25.

From the Library of zhanl mamykova

ptg999

 142 CHAPTER 2 Modeling and visualizing data

FIGURE 2-25 Error resulting from combining different columns in one OR statement in a CALCULATETABLE
filter

The reason expression fails because internally, every Boolean filter condition in CALCULA-
TETABLE and CALCULATE is transformed into a table. The following two table expressions are
equivalent:

// Boolean filter condition

Expensive Stock Item Boolean =
CALCULATETABLE (
 'Stock Item',
 'Stock Item'[Unit Price] > 300
)

// Table filter expression

Expensive Stock Item Filter All =
CALCULATETABLE (
 'Stock Item',
 FILTER (
 ALL ('Stock Item'[Unit Price]),
 'Stock Item'[Unit Price] > 300
)
)

When you combine different columns in one Boolean filter, DAX is unable to convert the
Boolean filter to an equivalent FILTER ... ALL table. Instead, you need to write an equivalent
filter table expression. The following expression returns the same table as the one shown in
Listing 2-10.

Expensive or Gray Stock Items CalculateTable =
CALCULATETABLE (
 'Stock Item',
 FILTER (

From the Library of zhanl mamykova

ptg999

 Skill 2.2: Create calculated columns, calculated tables, and measures CHAPTER 2 143

 ALL (
 'Stock Item'[Unit Price],
 'Stock Item'[Color]
),
 OR (
 'Stock Item'[Unit Price] > 300,
 'Stock Item'[Color] = "Gray"
)
)
)

MORE INFO FILTER ARGUMENTS IN CALCULATE

The approach described above only works for columns from one table. If you need to use
the OR logic with columns from different tables, you need to follow a different approach.
For a more detailed discussion, see the article by SQLBI, “Filter Arguments in CALCULATE” at:
https://www.sqlbi.com/articles/filter-arguments-in-calculate/.

VALUES and DISTINCT
The VALUES and DISTINCT functions work similarly: they return tables that contain only distinct
rows. Both functions can receive a column reference as a parameter. For example, the following
table returns 12 month names from the Date table:

Months = DISTINCT ('Date'[Month])

Both functions can also receive a table as a parameter. While the VALUES function can only
receive a physical table as a parameter, the DISTINCT function can also work with table expres-
sions, which means that the table can be either a physical table or a table returned by another
function.

Unlike the ALL function, which also returns a table with distinct rows, the VALUES and DIS-
TINCT functions do not remove filters from their tables. In practice, this means that these two
calculated columns in the Employee table return the same results:

Sale Rows Calculate = CALCULATE (COUNTROWS (Sale))

Sale Rows Calculate VALUES = CALCULATE (COUNTROWS (VALUES (Sale)))

As previously mentioned, if a table expression returns a table with one row and one column,
it can be converted to a scalar value. The following calculated column in the Employee table
works, too; it contains the same values as the Employee column:

Employee Calculate = CALCULATE (VALUES (Employee[Employee]))

Another major difference between the VALUES and DISTINCT functions is that the former
might include a special blank row that is added when some values on the many side of a rela-

From the Library of zhanl mamykova

https://www.sqlbi.com/articles/filter-arguments-in-calculate/

ptg999

 144 CHAPTER 2 Modeling and visualizing data

tionship do not have a matching value on the one side. The DISTINCT function never includes
a blank row unless a blank row physically exists in the data. To illustrate this difference, use the
Date table, which has an active relationship with the Sale table using the Delivery Date Key
column. There are null values in the column, which causes a special blank row to be added. The
following two tables return a different number of rows:

// 13 rows

Month Values = VALUES ('Date'[Month])

// 12 rows

Month Distinct = DISTINCT ('Date'[Month])

In this regard, the behavior of VALUES corresponds to ALL, while the behavior of DISTINCT
corresponds to ALLNOBLANKROW.

SUMMARIZE and SUMMARIZECOLUMNS
The SUMMARIZE function allows you to group a table by one or more columns and add new
columns, if necessary. The general syntax is as follows:

SUMMARIZE (Table, OldColumns, NewColumns)

The new columns are defined by specifying a name and formula for each column. SUMMARIZE
expects at least two arguments: a table to summarize and a column to group by.

The following formula produces a table with month names and numbers:

Month = SUMMARIZE ('Date', 'Date'[Month], 'Date'[Calendar Month Number])

In this case, the table does not include the special blank row that results from null values
being present in the Delivery Date Key column of the Sale table. If we decide to add a column
that contains the number of rows in the Sale table for each month, the blank row will still not
be included. The summarized table can be seen in Figure 2-26.

Month Sale =
SUMMARIZE (
 'Date',
 'Date'[Month],
 'Date'[Calendar Month Number],
 "Sale Rows", COUNTROWS (Sale)
)

From the Library of zhanl mamykova

ptg999

 Skill 2.2: Create calculated columns, calculated tables, and measures CHAPTER 2 145

FIGURE 2-26 Date table summarized

Note that we summarized the Date table. If instead, we summarize the Sale table with the
same columns, the blank row will appear, and it does not matter whether we include the Sale
Rows column (see Listing 2-13). The table can be seen in Figure 2-27.

LISTING 2-13 Summarizing the Sale table

Month Sale =
SUMMARIZE (
 Sale,
 'Date'[Month],
 'Date'[Calendar Month Number],
 "Sale Rows", COUNTROWS (Sale)
)

FIGURE 2-27 Sale table summarized

From the Library of zhanl mamykova

ptg999

 146 CHAPTER 2 Modeling and visualizing data

The columns to group by are optional. You can specify a table to summarize, new column
names, and expressions. If you specify only one new column name and expression, it will result
in a one-row and one-column table with a single value. As in the previous examples, the table
you summarize can make a difference.

// Returns 198043439.450001

Summarize Sale Single =
SUMMARIZE (
 Sale,
 "Total Sales", SUM (Sale[Total Including Tax])
)

// Returns 197776428.010001

Summarize Date Single =
SUMMARIZE (
 'Date',
 "Total Sales", SUM (Sale[Total Including Tax])
)

An example of such a table can be seen in Figure 2-28.

FIGURE 2-28 Sale table summarized to one row

SUMMARIZE only returns rows that have data. For example, if you summarize the Date table
by Calendar Year and Month, you will get 48 rows. If you summarize the Sale table instead, you
will get 42 rows: 41 Calendar Year and Month combinations plus the special blank row.

From the Library of zhanl mamykova

ptg999

 Skill 2.2: Create calculated columns, calculated tables, and measures CHAPTER 2 147

// Returns 48 rows

Date Year Month =
SUMMARIZE (
 'Date',
 'Date'[Calendar Year],
 'Date'[Month],
 'Date'[Calendar Month Number]
)

// Returns 42 rows

Sale Year Month =
SUMMARIZE (
 Sale,
 'Date'[Calendar Year],
 'Date'[Month],
 'Date'[Calendar Month Number]
)

 In SUMMARIZE, you do not have access to row context of the table you are summarizing.
Instead, SUMMARIZE divides the table into parts, grouping them by the columns you select,
with each part of the original table having its own filter context. This is why you don’t need to
wrap COUNTROWS (Sales) in CALCULATE to trigger context transition, as no context transi-
tion is necessary.

There is a function similar to SUMMARIZE: SUMMARIZECOLUMNS. It performs similar
operations, except you do not need to specify the table you want to summarize. It also works in
a slightly different way from SUMMARIZE. For instance, if you use the function to create a table
with Calendar Year and Month combinations, you will get a table with 49 rows: 48 existing
Calendar Year and Month combinations, plus the special blank row. If you add a count of Sale
rows, the table will have 42 rows, which is the same as using SUMMARIZE with the Sale table:

// 49 rows

Month Year = SUMMARIZECOLUMNS ('Date'[Calendar Year], 'Date'[Month])

// 42 rows

Month Year =
SUMMARIZECOLUMNS (
 'Date'[Calendar Year],
 'Date'[Month],
 "Sale Rows", COUNTROWS (Sale)
)

From the Library of zhanl mamykova

ptg999

 148 CHAPTER 2 Modeling and visualizing data

MORE INFO SUMMARIZE AND SUMMARIZECOLUMNS

Both SUMMARIZE and SUMMARIZECOLUMNS can be useful when creating aggregated
tables. There are a few more nuances about the functions, which are outside of the scope of
this book. To read more about the functions, see “SUMMARIZE Function (DAX)” at https://
msdn.microsoft.com/en-us/library/gg492171.aspx, and “SUMMARIZECOLUMNS Function
(DAX)” at https://msdn.microsoft.com/en-us/library/mt163696.aspx.

Additionally, it is worth reading the following articles by Alberto Ferrari and Marco Russo:
“All the secrets of SUMMARIZE” at https://www.sqlbi.com/articles/all-the-secrets-of-summa-
rize/, and “Introducing SUMMARIZECOLUMNS” at https://www.sqlbi.com/articles/introduc-
ing-summarizecolumns/.

ADDCOLUMNS and SELECTCOLUMNS
The ADDCOLUMNS function adds new columns to a table, generating row context in the
process. The new columns are also known as extension columns. The function expects at least
three arguments: a table to add columns to, a new column name, and a new column expres-
sion. For example, the following calculated table is equivalent to the one from Listing 2-13:

AddColumns Month Sale =
ADDCOLUMNS (
 ALL ('Date'[Month], 'Date'[Calendar Month Number]),
 "Sale Rows", CALCULATE (COUNTROWS (Sale))
)

The row context in ADDCOLUMNS makes this function different from SUMMARIZE in two
ways:

 ■ First, you need to perform context transition to get different values for each row (you
can see it in the preceding formula). Without CALCULATE, we would get the same value
for each row, which would be the total number of rows in the Sale table.

 ■ Second, you can reference columns in the table to which you add columns. For instance,
you can take all the Calendar Year and Calendar Month Number combinations from the
Date table and create a column that puts them in a sequential order:

AddColumns YearMonthSequential =
ADDCOLUMNS (
 ALL (
 'Date'[Calendar Year],
 'Date'[Calendar Month Number]
),
 "Year Month Sequential",
 'Date'[Calendar Year] * 12 + 'Date'[Calendar Month Number]
)

From the Library of zhanl mamykova

https://msdn.microsoft.com/en-us/library/gg492171.aspx
https://msdn.microsoft.com/en-us/library/gg492171.aspx
https://msdn.microsoft.com/en-us/library/mt163696.aspx
https://www.sqlbi.com/articles/all-the-secrets-of-summa-rize/
https://www.sqlbi.com/articles/all-the-secrets-of-summa-rize/
https://www.sqlbi.com/articles/introducing-summarizecolumns/
https://www.sqlbi.com/articles/introducing-summarizecolumns/

ptg999

 Skill 2.2: Create calculated columns, calculated tables, and measures CHAPTER 2 149

To achieve the same effect using SUMMARIZE or SUMMARIZECOLUMNS, which use filter
context, you must use VALUES to convert multiple column values into scalar values:

SummarizeColumns YearMonthSequential =
SUMMARIZECOLUMNS (
 'Date'[Calendar Year],
 'Date'[Calendar Month Number],
 "Year Month Sequential",
 VALUES ('Date'[Calendar Year]) * 12
 + VALUES ('Date'[Calendar Month Number])
)

The SELECTCOLUMNS function works like ADDCOLUMNS, except it does not keep the origi-
nal columns. If you want to keep some of them using this function, you will have to create new
columns that reference them. For example, you can take a table that contains all Calendar Year
and Month combinations and keep only the Calendar Year column:

SelectColumns Calendar Year =
SELECTCOLUMNS (
 ALL ('Date'[Calendar Year], 'Date'[Month]),
 "Year", 'Date'[Calendar Year]
)

The first few rows of the resulting table can be seen in Figure 2-29. Note that SELECTCOL-
UMNS does not produce distinct values in its columns:

FIGURE 2-29 Partial results of the SelectColumns Calendar Year calculated table

From the Library of zhanl mamykova

ptg999

 150 CHAPTER 2 Modeling and visualizing data

It is possible to group the results by extension columns using SUMMARIZE. For example,
you can create an extension column that returns a quarter label for each date and then get the
distinct values of this column. The results can be seen in Figure 2-30.

Summarize SelectColumns Quarter =
SUMMARIZE (
 SELECTCOLUMNS (
 'Date',
 "Quarter", FORMAT ('Date'[Date], "\QQ")
),
 [Quarter]
)

FIGURE 2-30 Date summarized by extension column, Quarter

Note that you must reference the extension column without a table name because it is not a
physical column.

NOTE ALIASING COLUMNS WITH SELECTCOLUMNS

SELECTCOLUMNS can be used to rename columns. For more information on this technique,
see a blog post by Chris Webb, “Using SelectColumns() To Alias Columns In DAX” at https://
blog.crossjoin.co.uk/2015/06/01/using-selectcolumns-to-alias-columns-in-dax/.

From the Library of zhanl mamykova

https://blog.crossjoin.co.uk/2015/06/01/using-selectcolumns-to-alias-columns-in-dax/
https://blog.crossjoin.co.uk/2015/06/01/using-selectcolumns-to-alias-columns-in-dax/

ptg999

 Skill 2.2: Create calculated columns, calculated tables, and measures CHAPTER 2 151

MORE INFO ADDCOLUMNS AND SELECTCOLUMNS

For more information on and examples of using ADDCOLUMNS and SELECTCOLUMNS, see
“ADDCOLUMNS Function (DAX)” at https://msdn.microsoft.com/en-us/library/gg492204.
aspx, and “SELECTCOLUMNS Function (DAX)” at https://msdn.microsoft.com/en-us/library/
mt761759.aspx.

TOPN
The TOPN function ranks table rows by specified criteria and takes the top N rows. There are
three required arguments: N number, table expression, and expression to order rows by. The
fourth argument, which is optional, defines the order: ASC for ascending and DESC for de-
scending. If omitted, the default value is DESC. The order of rows is not guaranteed.

For example, you can rank salespeople by sales amount and take the top three. The result is
a subset of the original table and does not include the values you are ranking by:

Top 3 Employees by Sales =
TOPN (
 3,
 VALUES (Employee[Employee]),
 CALCULATE (SUM (Sale[Total Excluding Tax]))
)

Employee

Hudson Onslow

Kayla Woodcock

Archer Lamble

Note that TOPN uses row context, so to rank employees properly you need to perform con-
text transition. Without CALCULATE, you would get incorrect results. Because we can use row
context, you can also get the first three employees alphabetically if you order them by name:

Top 3 Employees by Name =
TOPN (
 3,
 VALUES (Employee[Employee]),
 Employee[Employee],
 ASC
)

Employee

Anthony Grosse

Alica Fatnowna

Amy Trefl

From the Library of zhanl mamykova

https://msdn.microsoft.com/en-us/library/gg492204.aspx
https://msdn.microsoft.com/en-us/library/gg492204.aspx
https://msdn.microsoft.com/en-us/library/mt761759.aspx
https://msdn.microsoft.com/en-us/library/mt761759.aspx

ptg999

 152 CHAPTER 2 Modeling and visualizing data

In the case of ties, you get more rows than expected. For instance, if you order Wide World
Importers employees by sales in ascending order and take the top three, you end up with nine
rows because nine employees did not sell anything. As a result, they all tie for the first place
with zero (more precisely, blank) sales.

Bottom 3 Employees by Sales =
TOPN (
 3,
 VALUES (Employee[Employee]),
 CALCULATE (SUM (Sale[Total Excluding Tax])),
 ASC
)

Employee

Jai Shand

Ethan Onslow

Isabella Rupp

Piper Koch

Henry Forlonge

Stella Rosenhain

Katie Darwin

Alica Fatnowna

Eva Muirden

NOTE USING TOPN

With TOPN, it is also possible to order by more than one expression: in this case, expres-
sions and orders come in pairs after the first expression and order. For more information
about the TOPN function, see “TOPN Function (DAX)” at https://msdn.microsoft.com/en-us/
library/gg492198.aspx.

CROSSJOIN, GENERATE, and GENERATEALL
The CROSSJOIN function allows you to create a Cartesian product between two or more tables.
For example, you can create a table with all possible Brand and Buying Package combinations,
not just those that exist in your data:

Buying Package, Brand =
CROSSJOIN (
 VALUES ('Stock Item'[Buying Package]),
 VALUES ('Stock Item'[Brand])
)

From the Library of zhanl mamykova

https://msdn.microsoft.com/en-us/library/gg492198.aspx
https://msdn.microsoft.com/en-us/library/gg492198.aspx

ptg999

 Skill 2.2: Create calculated columns, calculated tables, and measures CHAPTER 2 153

The resulting table has eight rows: four Buying Package values multiplied by two Brand
values. If you wrote ALL (‘Stock Item’[Buying Package], ‘Stock Item’[Brand]), you would
get only five rows. All columns in the resulting tables must be unique. This means that if you
want to create a Cartesian product of a table with itself, you must rename the columns of one
of the tables in advance. For example, you could rename one of the columns using SELECTCOL-
UMNS:

Buying Package CrossJoin =
CROSSJOIN (
 VALUES ('Stock Item'[Buying Package]),
 SELECTCOLUMNS (
 VALUES ('Stock Item'[Buying Package]),
 "Buying Package 2", 'Stock Item'[Buying Package]
)
)

With CROSSJOIN, there is no row context that you can use when writing the expression of
the second and subsequent tables. The GENERATE function, which always receives two table
expressions as parameters, allows you to reference the current row in the first table when writ-
ing the second table expression. For instance, create a table with calendar years and top three
employees in each year:

Top 3 Employees per Calendar Year =
GENERATE (
 DISTINCT ('Date'[Calendar Year]),
 TOPN (
 3,
 VALUES (Employee[Employee]),
 CALCULATE (SUM (Sale[Total Excluding Tax]))
)
)

Calendar Year Employee

2013 Archer Lamble

2013 Kayla Woodcock

2013 Hudson Onslow

2014 Hudson Hollinworth

2014 Archer Lamble

2014 Kayla Woodcock

2015 Hudson Hollinworth

2015 Lily Code

2015 Jack Potter

2016 Hudson Hollinworth

2016 Taj Shand

2016 Archer Lamble

From the Library of zhanl mamykova

ptg999

 154 CHAPTER 2 Modeling and visualizing data

The resulting table includes only those years and employees that actually had sales. If you
wanted to include all years and employees that meet our criteria, even those that did not make
any sales, use the GENERATEALL function. It works in the same way as GENERATE, except it
includes all possible combinations:

// Returns 123 rows

Top 3 Employees per Calendar Year Month =
GENERATE (
 ALLNOBLANKROW ('Date'[Calendar Year], 'Date'[Month]),
 TOPN (
 3,
 SUMMARIZE (RELATEDTABLE (Sale), Employee[Employee]),
 CALCULATE (SUM (Sale[Total Excluding Tax]))
)
)

// Returns 130 rows

Top 3 Employees per Calendar Year Month =
GENERATEALL (
 ALLNOBLANKROW ('Date'[Calendar Year], 'Date'[Month]),
 TOPN (
 3,
 SUMMARIZE (RELATEDTABLE (Sale), Employee[Employee]),
 CALCULATE (SUM (Sale[Total Excluding Tax]))
)
)

In the above expressions, the seven-row difference comes from months from June to De-
cember 2016, which have no deliveries, yet we have these combinations in our Date table.

MORE INFO CROSSJOIN, GENERATE, AND GENERATEALL

For more information and examples of using the three table functions discussed above, see
“CROSSJOIN Function (DAX)” at https://msdn.microsoft.com/en-us/library/gg492168.aspx,
“GENERATE Function (DAX)” at https://msdn.microsoft.com/en-us/library/gg492196.aspx,
and “GENERATEALL Function (DAX)” at https://msdn.microsoft.com/en-us/library/gg492206.
aspx.

GENERATESERIES
With GENERATESERIES, you can generate a table with one column, called Value, containing
a list of numbers with predefined increment. These values need not exist in the data model.
The function expects at least two arguments: start value and end value. If the start value is
greater than the end value, the result will be a table with no rows. The optional third parameter
specifies the increment; if omitted, it is 1 by default. The following expression outputs a list of
numbers from 1 to 5:

1 to 5 = GENERATESERIES (1, 5)

From the Library of zhanl mamykova

https://msdn.microsoft.com/en-us/library/gg492168.aspx
https://msdn.microsoft.com/en-us/library/gg492196.aspx
https://msdn.microsoft.com/en-us/library/gg492206.aspx
https://msdn.microsoft.com/en-us/library/gg492206.aspx

ptg999

 Skill 2.2: Create calculated columns, calculated tables, and measures CHAPTER 2 155

Value

1

2

3

4

5

Using the optional third parameter, you can create consecutive lists that increment by a
number other than 1. For example, generate a list of odd numbers from 1 to 9 inclusive:

Odd 1 to 9 = GENERATESERIES (1, 10, 2)

Value

1

3

5

7

9

Note that even though we specified 10 as the end value, the table only goes up to 9 because
the next value in the sequence, 11, falls outside of the specified range.

The GENERATESERIES function automatically detects the data type. The only column in the
above table has the Whole Number data type. In the following expression, the data type is set
as Decimal Number:

0.1 to 0.5 Decimal = GENERATESERIES (0.1, 0.5, 0.1)

Value

0.1

0.2

0.3

0.4

0.5

It is also possible to specify data types explicitly. For instance, you can use the CURRENCY
function to convert values to the Fixed Decimal Number type:

1 to 5 Fixed Decimal = GENERATESERIES (CURRENCY (1), CURRENCY (5))

GENERATESERIES can be used to generate lists of datetime values as well. The following
table expression creates a one-column table of Date/Time data type that starts at 12 am on 1
May 2018 and finishes at 12 am on 3 May 2018, incrementing by 12 hours:

From the Library of zhanl mamykova

ptg999

 156 CHAPTER 2 Modeling and visualizing data

1 to 3 May 2018 at 12-hour intervals =
GENERATESERIES (
 DATE (2018, 5, 1),
 DATE (2018, 5, 3),
 TIME (12, 0, 0)
)

Value

1/05/2018 12:00:00 AM

1/05/2018 12:00:00 PM

2/05/2018 12:00:00 AM

2/05/2018 12:00:00 PM

3/05/2018 12:00:00 AM

Though GENERATESERIES can only generate numeric or datetime value lists, it is possible to
generate lists of letters by combining SELECTCOLUMNS and UNICHAR:

Uppercase Latin alphabet: =
SELECTCOLUMNS (
 GENERATESERIES (65, 90),
 "Letter", UNICHAR ([Value])
)

Letter

A

B

C

…

Z

NOTE USING THE UNICHAR FUNCTION

The UNICHAR function takes a positive integer as its only parameter and returns a Unicode
character with the code. A list of Unicode characters and their corresponding decimal num-
bers can be found online on websites such as Wikipedia at: https://en.wikipedia.org/wiki/
List_of_Unicode_characters.

For more examples of using the function, see Chris Webb’s blog post, “The DAX Unichar()
Function And How To Use It In Measures For Data Visualization” at https://blog.crossjoin.
co.uk/2017/04/11/the-dax-unichar-function-and-how-to-use-it-in-measures-for-data-
visualisation/.

The GENERATESERIES function is used when you create a parameter with the What if feature
in Power BI Desktop. This feature is covered in this section under “Use What If parameters”.

From the Library of zhanl mamykova

https://en.wikipedia.org/wiki/List_of_Unicode_characters
https://en.wikipedia.org/wiki/List_of_Unicode_characters
https://blog.crossjoin.co.uk/2017/04/11/the-dax-unichar-function-and-how-to-use-it-in-measures-for-data-visualisation/
https://blog.crossjoin.co.uk/2017/04/11/the-dax-unichar-function-and-how-to-use-it-in-measures-for-data-visualisation/
https://blog.crossjoin.co.uk/2017/04/11/the-dax-unichar-function-and-how-to-use-it-in-measures-for-data-visualisation/

ptg999

 Skill 2.2: Create calculated columns, calculated tables, and measures CHAPTER 2 157

MORE INFO USING GENERATESERIES

For more information and examples on using the GENERATESERIES function, see “GENERA-
TESERIES Function” at https://msdn.microsoft.com/en-us/library/mt842624.aspx, and Marco
Russo’s article, “Generating a series of numbers in DAX” at https://www.sqlbi.com/articles/
generating-a-series-of-numbers-in-dax/.

CALENDAR and CALENDARAUTO
The CALENDAR function works like GENERATESERIES when you work with dates only: it gener-
ates a one-column table of datetime data type called Date. This function can be especially
useful when your data model does not have a Date table and you want to create your own
calendar.

CALENDAR has two required parameters: start date and end date. By default, the values
increment by one day. The following expression generates a table with 365 rows, starting with 1
January 2018 and ending with 31 December 2018:

Year 2018 = CALENDAR (DATE (2018, 1, 1), DATE (2018, 12, 31))

Date

1/01/2018 12:00:00 AM

2/01/2018 12:00:00 AM

3/01/2018 12:00:00 AM

…

29/12/2018 12:00:00 AM

30/12/2018 12:00:00 AM

31/12/2018 12:00:00 AM

The CALENDARAUTO function generates a list of dates, taking into account all date and da-
tetime type columns in the data model: it takes the minimum and maximum of all dates found
and extracts years; then it generates a list of dates starting with 1 January of the minimum year
and ending with 31 December of the maximum year.

CALENDARAUTO has one optional parameter, which is the fiscal year end month. If omit-
ted, the default value is 12, which corresponds to the year ending on 31 December. If your data
model contains only dates from 1 January 2018 to 31 December 2018, then the following calcu-
lated table returns all dates from 1 July 2017 to 30 June 2019:

Fiscal Date = CALENDARAUTO (6)

Because CALENDARAUTO considers all the date and datetime columns in a data model,
sometimes this can lead to tables having more rows than necessary. For example, creating the
following, calculated in the Wide World Importers data model, results in a table with close to
three million rows:

All Dates = CALENDARAUTO ()

From the Library of zhanl mamykova

https://msdn.microsoft.com/en-us/library/mt842624.aspx
https://www.sqlbi.com/articles/generating-a-series-of-numbers-in-dax/
https://www.sqlbi.com/articles/generating-a-series-of-numbers-in-dax/

ptg999

 158 CHAPTER 2 Modeling and visualizing data

You can see the maximum date in this table by right-clicking on the resulting Date column
and selecting Sort Descending. Note that the maximum date is 31 December 9999. The reason
why this happens is that we have Valid From and Valid To columns in some tables of our data
model, such as City. The values of the Valid To column are often 31 December 9999. Therefore,
CALENDARAUTO generates a table with values for every date up to that date.

Unless your data model contains many meaningful date or datetime columns, it is prefer-
able to use the CALENDAR function, referencing the relevant date columns. If we did not have
the Date table in our data model, and the only date column we had was the Invoice Date Key
column in the Sale table, we could create the following date table:

Calendar = CALENDAR (MIN (Sale[Invoice Date Key]), MAX (Sale[Invoice Date Key]))

Because we also have the Delivery Date Key column in our data model, you can use the
alternative MIN and MAX syntax, which allows the comparison of two scalar values:

Calendar =
CALENDAR (
 MIN (
 MIN (Sale[Delivery Date Key]),
 MIN (Sale[Invoice Date Key])
),
 MAX (
 MAX (Sale[Delivery Date Key]),
 MAX (Sale[Invoice Date Key])
)
)

If you prefer having complete years in your calendar table, you can use the DATE/YEAR
combination:

Calendar =
CALENDAR (
 DATE (
 YEAR (
 MIN (
 MIN (Sale[Delivery Date Key]),
 MIN (Sale[Invoice Date Key])
)
),
 1,
 1
),
 DATE (
 YEAR (
 MAX (
 MAX (Sale[Delivery Date Key]),
 MAX (Sale[Invoice Date Key])
)
),
 12,
 31
)
)

From the Library of zhanl mamykova

ptg999

 Skill 2.2: Create calculated columns, calculated tables, and measures CHAPTER 2 159

You can then add calculated columns, such as month name and calendar year number, to
the newly created table to make it a proper calendar table.

MORE INFO USING CALENDAR AND CALENDARAUTO

For more information on the CALENDAR and CALENDARAUTO functions, see “CALENDAR
Function (DAX)” at https://msdn.microsoft.com/en-us/library/dn802546.aspx, and “CALEN-
DARAUTO Function (DAX)” at https://msdn.microsoft.com/en-us/library/dn802534.aspx.

ROW
With the ROW function, you can create one-row tables with several columns at once. The argu-
ments come in pairs: a column name goes first, then an expression. Only one pair of arguments
is required. For example, you can create a one-row table with two columns: number of rows in
the Sale table and number of rows in the Date table:

One Row =
ROW (
 "Sale Rows", COUNTROWS (Sale),
 "Date Rows", COUNTROWS ('Date')
)

Sale Rows Date Rows

228266 1461

The ROW function can be useful when you want to add a row to another table using the
UNION function, covered next.

MORE INFO THE ROW FUNCTION

For more information on the ROW function, see “ROW Function (DAX)” at https://msdn.
microsoft.com/en-us/library/gg492184.aspx.

UNION
The UNION function works similarly to the Append feature in Power Query Editor: it combines
two or more tables vertically. If the tables you are combining have the same rows among
them, duplicate rows will be retained. The names of the columns do not have to match, but the
number of columns in tables must be the same because tables are combined by the position of
columns, not the names. The output table will have the same column names as the first table.
If tables have different data types, they will be combined in accordance with DAX data type
coercion. The following is an example of UNION usage:

Table1 =
UNION (
 ROW ("Color", "Red", "Value 1", 1),
 ROW ("Color", "Red", "Value 1", 2),

From the Library of zhanl mamykova

https://msdn.microsoft.com/en-us/library/dn802546.aspx
https://msdn.microsoft.com/en-us/library/dn802534.aspx
https://msdn.microsoft.com/en-us/library/gg492184.aspx
https://msdn.microsoft.com/en-us/library/gg492184.aspx

ptg999

 160 CHAPTER 2 Modeling and visualizing data

 ROW ("Color", "Green", "Value 1", 3),
 ROW ("Color", "Blue", "Value 1", CURRENCY (1))
)

Color Value 1

Red 1

Red 2

Green 3

Blue 1

Note that in this case, the second column will have the Fixed Decimal Number data type.

UNION can be used to create common dimensions from several different tables. For
instance, the Calendar Year column in the Target table and the Date table are examples. In
addition to that, we have the Bill To Customer column in both Target and Customer tables. To
create bridging tables to pass filters from Date and Customer tables to the Target table, create
the following calculated tables:

// Bridging table between Date and Target

Calendar Year =
DISTINCT (
 UNION (
 ALLNOBLANKROW (Target[Calendar Year]),
 ALLNOBLANKROW ('Date'[Calendar Year])
)
)

// Bridging table between Customer and Target

Bill To Customer =
DISTINCT (
 UNION (
 ALLNOBLANKROW (Target[Bill To Customer]),
 ALLNOBLANKROW (Customer[Bill To Customer])
)
)

Hide both bridging tables and create the following four relationships:

 ■ From ‘Target’[Bill To Customer] to ‘Bill To Customer’[Bill To Customer]

 ■ From ‘Target’[Calendar Year] to ‘Calendar Year’[Calendar Year]

 ■ Bidirectional from ‘Customer’[Bill To Customer] to ‘Bill To Customer’[Bill To Customer]

 ■ Bidirectional from ‘Date’[Calendar Year] to ‘Calendar Year’[Calendar Year]

At this point, if you go to the relationships view, your data model should look similar to
Figure 2-31.

From the Library of zhanl mamykova

ptg999

 Skill 2.2: Create calculated columns, calculated tables, and measures CHAPTER 2 161

FIGURE 2-31 Relationships view after adding and relating bridging tables

MORE INFO USING UNION

For more information on the UNION function, see “UNION Function (DAX)” at https://msdn.
microsoft.com/en-us/library/dn802530.aspx.

INTERSECT
The INTERSECT function creates a table that consists of rows that are present in both tables
that are used as arguments in INTERSECT. In the following examples, we are going to use the
function on these two tables, called TableOne and TableTwo.

TABLE 2-11 TableOne

Color Value 1

Red 1

Red 2

Green 3

Blue 1

TABLE 2-12 TableTwo

Color Value 2

Green 3

Blue 1

Blue 1

Yellow 2

From the Library of zhanl mamykova

https://msdn.microsoft.com/en-us/library/dn802530.aspx
https://msdn.microsoft.com/en-us/library/dn802530.aspx

ptg999

 162 CHAPTER 2 Modeling and visualizing data

Note that there is a common column name, Color, which differs from the name of the
second column. Also, these tables have common rows. INTERSECT has the same requirements
for tables as UNION: both tables must have the same number of columns, and the tables are
combined based on the position of columns. The result of the following expression is a two-
row table that has the same column names as TableOne:

IntersectOneTwo =
INTERSECT (
 UNION (
 ROW ("Color", "Red", "Value 1", 1),
 ROW ("Color", "Red", "Value 1", 2),
 ROW ("Color", "Green", "Value 1", 3),
 ROW ("Color", "Blue", "Value 1", 1)
),
 UNION (
 ROW ("Color", "Green", "Value 2", 3),
 ROW ("Color", "Blue", "Value 2", 1),
 ROW ("Color", "Blue", "Value 2", 1),
 ROW ("Color", "Yellow", "Value 2", 2)
)
)

Color Value 1

Green 3

Blue 1

The order in which two tables are used in INTERSECT matters. In the following calculated
table, we are also using TableOne and TableTwo, but in reverse order:

IntersectTwoOne =
INTERSECT (
 UNION (
 ROW ("Color", "Green", "Value 2", 3),
 ROW ("Color", "Blue", "Value 2", 1),
 ROW ("Color", "Blue", "Value 2", 1),
 ROW ("Color", "Yellow", "Value 2", 2)
),
 UNION (
 ROW ("Color", "Red", "Value 1", 1),
 ROW ("Color", "Red", "Value 1", 2),
 ROW ("Color", "Green", "Value 1", 3),
 ROW ("Color", "Blue", "Value 1", 1)
)
)

Color Value 2

Green 3

Blue 1

Blue 1

From the Library of zhanl mamykova

ptg999

 Skill 2.2: Create calculated columns, calculated tables, and measures CHAPTER 2 163

Note that the second column name is now Value 2 instead of Value 1. Also, the output table
retains duplicate rows from the first table but not from the second table.

MORE INFO USING INTERSECT

For more information on the INTERSECT function, see “INTERSECT Function (DAX)” at
https://msdn.microsoft.com/en-us/library/mt243783.aspx.

EXCEPT
The EXCEPT function takes two tables as arguments and outputs all rows that are in the first
table but not in the second table. Columns are compared based on their positions, so the num-
ber of columns in both tables must be the same, which is the same behavior as with the UNION
and INTERSECT functions.

As with INTERSECT, the order of tables used as arguments influences the results. Note the
difference in the results when EXCEPT is used with TableOne and TableTwo versus TableTwo
and Table one:

ExceptOneTwo =
EXCEPT (
 UNION (
 ROW ("Color", "Red", "Value 1", 1),
 ROW ("Color", "Red", "Value 1", 2),
 ROW ("Color", "Green", "Value 1", 3),
 ROW ("Color", "Blue", "Value 1", 1)
),
 UNION (
 ROW ("Color", "Green", "Value 2", 3),
 ROW ("Color", "Blue", "Value 2", 1),
 ROW ("Color", "Blue", "Value 2", 1),
 ROW ("Color", "Yellow", "Value 2", 2)
)
)

Color Value 1

Red 1

Red 2

ExceptTwoOne =
EXCEPT (
 UNION (
 ROW ("Color", "Green", "Value 2", 3),
 ROW ("Color", "Blue", "Value 2", 1),
 ROW ("Color", "Blue", "Value 2", 1),
 ROW ("Color", "Yellow", "Value 2", 2)
),

From the Library of zhanl mamykova

https://msdn.microsoft.com/en-us/library/mt243783.aspx

ptg999

 164 CHAPTER 2 Modeling and visualizing data

 UNION (
 ROW ("Color", "Red", "Value 1", 1),
 ROW ("Color", "Red", "Value 1", 2),
 ROW ("Color", "Green", "Value 1", 3),
 ROW ("Color", "Blue", "Value 1", 1)
)
)

Color Value 2

Yellow 2

Like with INTERSECT, the output table has the same column names as the first table. Dupli-
cate rows from the first table, if any, are retained.

MORE INFO USING EXCEPT

For more information on the EXCEPT function, see “EXCEPT Function (DAX)” at https://msdn.
microsoft.com/en-us/library/mt243784.aspx.

NATURALINNERJOIN
The NATURALINNERJOIN function works like the Merge feature in Power Query Editor: it re-
ceives two tables as arguments and joins them based on common column names. The columns
that are used for joining must have the same data types. NATURALINNERJOIN joins two tables
and outputs a table that has the same values present in join columns of both tables.

In the following examples, we are again using TableOne and TableTwo:

NaturalInnerJoinOneTwo =
NATURALINNERJOIN (
 UNION (
 ROW ("Color", "Red", "Value 1", 1),
 ROW ("Color", "Red", "Value 1", 2),
 ROW ("Color", "Green", "Value 1", 3),
 ROW ("Color", "Blue", "Value 1", 1)
),
 UNION (
 ROW ("Color", "Green", "Value 2", 3),
 ROW ("Color", "Blue", "Value 2", 1),
 ROW ("Color", "Blue", "Value 2", 1),
 ROW ("Color", "Yellow", "Value 2", 2)
)
)

Color Value 1 Value 2

Green 3 3

Blue 1 1

Blue 1 1

From the Library of zhanl mamykova

https://msdn.microsoft.com/en-us/library/mt243784.aspx
https://msdn.microsoft.com/en-us/library/mt243784.aspx

ptg999

 Skill 2.2: Create calculated columns, calculated tables, and measures CHAPTER 2 165

Note that in this case, the order in which you join tables only matters when considering the
order of columns:

NaturalInnerJoinTwoOne =
NATURALINNERJOIN (
 UNION (
 ROW ("Color", "Green", "Value 2", 3),
 ROW ("Color", "Blue", "Value 2", 1),
 ROW ("Color", "Blue", "Value 2", 1),
 ROW ("Color", "Yellow", "Value 2", 2)
),
 UNION (
 ROW ("Color", "Red", "Value 1", 1),
 ROW ("Color", "Red", "Value 1", 2),
 ROW ("Color", "Green", "Value 1", 3),
 ROW ("Color", "Blue", "Value 1", 1)
)
)

Color Value 2 Value 1

Green 3 3

Blue 1 1

Blue 1 1

NATURALINNERJOIN can also join physical tables that have a relationship between them.
For instance, create the following two calculated tables:

// Many side of a relationship

TableOne =
UNION (
 ROW ("ColorOne", "Red", "Value 1", 1),
 ROW ("ColorOne", "Red", "Value 1", 2),
 ROW ("ColorOne", "Green", "Value 1", 3),
 ROW ("ColorOne", "Blue", "Value 1", 1)
)

ColorOne Value 1

Red 1

Red 2

Green 3

Blue 1

// One side of a relationship

TableThree =
UNION (
 ROW ("ColorThree", "Green", "Value 3", 3),
 ROW ("ColorThree", "Blue", "Value 3", 1),
 ROW ("ColorThree", "Yellow", "Value 3", 2)
)

From the Library of zhanl mamykova

ptg999

 166 CHAPTER 2 Modeling and visualizing data

ColorThree Value 3

Green 3

Blue 1

Yellow 2

Once you create a relationship between ColorOne and ColorThree, you can create the fol-
lowing calculated table:

NaturalInnerJoin One Three = NATURALINNERJOIN (TableOne, TableThree)

ColorThree Value 3 ColorOne Value 1

Blue 1 Blue 1

Green 3 Green 3

In this case, the order of arguments make no difference. Note that we are only able to cre-
ate this calculated table because there are no columns that have the same name and there is
a relationship between these tables. Without a relationship, we would get the following error:
“No common join columns detected. The join function ‘NATURALINNERJOIN’ requires at-least
one common join column.”

If we were joining two related tables that had columns that shared names, we would get
an error like the following one: “The Column with the name of ‘ColorOne’ already exists in
the ‘Table’ Table.” This limitation is not unique to NATURALINNERJOIN–in general, all column
names in materialized tables must be unique in DAX. Virtual tables can have the same column
names in some cases. The following calculated table works even if TableOne and TableThree
have common column names:

Aggregated Virtual Table =
ROW (
 "NumRows",
 COUNTROWS (NATURALINNERJOIN (TableOne, TableThree))
)

NumRows

2

The ability to join tables with common names can be useful when passing filters to CALCU-
LATE or CALCULATETABLE.

MORE INFO USING NATURALINNERJOIN

For more information on the NATURALINNERJOIN function, see “NATURALINNERJOIN
Function (DAX)” at https://msdn.microsoft.com/en-us/library/dn802543.aspx.

From the Library of zhanl mamykova

https://msdn.microsoft.com/en-us/library/dn802543.aspx

ptg999

 Skill 2.2: Create calculated columns, calculated tables, and measures CHAPTER 2 167

NATURALLEFTOUTERJOIN
The NATURALLEFTOUTERJOIN function is similar to NATURALINNERJOIN, but it performs the
left outer join instead of the inner join. NATURALLEFTOUTERJOIN returns a table with all rows
from the first table and extra columns from the second table where values in the join columns
of the right table are present in the join columns of the first table:

NaturalLeftOuterJoinOneTwo =
NATURALLEFTOUTERJOIN (
 UNION (
 ROW ("Color", "Red", "Value 1", 1),
 ROW ("Color", "Red", "Value 1", 2),
 ROW ("Color", "Green", "Value 1", 3),
 ROW ("Color", "Blue", "Value 1", 1)
),
 UNION (
 ROW ("Color", "Green", "Value 2", 3),
 ROW ("Color", "Blue", "Value 2", 1),
 ROW ("Color", "Blue", "Value 2", 1),
 ROW ("Color", "Yellow", "Value 2", 2)
)
)

Color Value 1 Value 2

Red 1

Red 2

Green 3 3

Blue 1 1

Blue 1 1

Because NATURALLEFTOUTERJOIN performs a left outer join, the order of tables used as
parameters is very important. The following table not only has a different order of columns,
but the rows are also different:

NaturalLeftOuterJoinTwoOne =
NATURALLEFTOUTERJOIN (
 UNION (
 ROW ("Color", "Green", "Value 2", 3),
 ROW ("Color", "Blue", "Value 2", 1),
 ROW ("Color", "Blue", "Value 2", 1),
 ROW ("Color", "Yellow", "Value 2", 2)
),
 UNION (
 ROW ("Color", "Red", "Value 1", 1),
 ROW ("Color", "Red", "Value 1", 2),
 ROW ("Color", "Green", "Value 1", 3),
 ROW ("Color", "Blue", "Value 1", 1)
)
)

From the Library of zhanl mamykova

ptg999

 168 CHAPTER 2 Modeling and visualizing data

Color Value 2 Value 1

Green 3 3

Blue 1 1

Blue 1 1

Yellow 2

Same as NATURALINNERJOIN, NATURALLEFTOUTERJOIN can be used with tables that have
a relationship and no common column names.

MORE INFO USING NATURALLEFTOUTERJOIN

For more information on the NATURALLEFTOUTERJOIN function, see “NATU-
RALLEFTOUTERJOIN Function (DAX)” at https://msdn.microsoft.com/en-us/library/
dn802527.aspx.

DATATABLE
The DATATABLE function allows you to create calculated tables with data that you enter manu-
ally. Earlier in this book, you used the Enter Data feature of Power BI to enter data manually–
DATATABLE provides an alternative.

At a minimum, DATATABLE takes three arguments: column name, data type, and list of val-
ues. The data types that you can choose are as follows:

 ■ BOOLEAN True/False

 ■ CURRENCY Fixed Decimal Number

 ■ DATETIME Date/Time

 ■ DOUBLE Decimal Number

 ■ INTEGER Whole Number

 ■ STRING Text

The final argument is a list of values in curly braces that resembles what you would type in
M inside the #table construct. Create the Scale table using the DATATABLE function as follows:

Scale DataTable =
DATATABLE (
 "Scale", INTEGER,
 {
 { 1 },
 { 1000 },
 { 1000000 }
 }
)

From the Library of zhanl mamykova

https://msdn.microsoft.com/en-us/library/dn802527.aspx
https://msdn.microsoft.com/en-us/library/dn802527.aspx

ptg999

 Skill 2.2: Create calculated columns, calculated tables, and measures CHAPTER 2 169

Scale

1

1000

1000000

You can create a table with more than one column by listing all column names and data
types in pairs:

Enriched Scale =
DATATABLE (
 "Scale", INTEGER,
 "Description", STRING,
 {
 { 1, "Normal" },
 { 1000, "Thousands" },
 { 1000000, "Millions" }
 }
)

Scale Description

1 Normal

1000 Thousands

1000000 Millions

Note that all values in curly braces must be constants–you cannot use expressions inside
DATATABLE. For instance, the following calculated table cannot be created:

Scale Wrong =
DATATABLE (
 "Scale", INTEGER,
 {
 { 1 + 0 },
 { 1000 },
 { 1000000 }
 }
)

The error message we get in this case is as follows: “The tuple at index ‘1’ from the table
definition of the DATATABLE function does not have a constant expression in the column at
index ‘1’.”

DAX also allows you to create anonymous tables without defining column names, though
the syntax is slightly different from the DATATABLE syntax. After the equation operator, you
also use curly braces, but inside them, you do not use curly braces again. If you define a one-
column table, you list your values separated by a comma, and DAX will call the new column
Value. You can also define multicolumn tables by listing values of each row in parenthesis; the

From the Library of zhanl mamykova

ptg999

 170 CHAPTER 2 Modeling and visualizing data

parenthesis sets should be separated by commas as well. In this case, DAX will give the new
columns names like Value1, Value2, and so on. Data types will also be defined automatically. For
instance, we can create the following table:

Single-column table = { 1, 2 }

Value

1

2

The following is an example of an anonymous table with three columns:

Anonymous table =
{
 (1, "a", DATE (2018, 5, 1)),
 (2, "b", DATE (2018, 5, 23))
}

Value1 Value2 Value3

1 a 1/05/2018 12:00:00 AM

2 b 23/05/2018 12:00:00 AM

MORE INFO USING DATATABLE

For more information on the DATATABLE function, see “DATATABLE Function” at https://
msdn.microsoft.com/en-us/library/mt674921.aspx. You can read more about using DATAT-
ABLE to create static tables in an article by Marco Russo, “Create Static Tables in DAX Using
the DATATABLE Function” at: https://www.sqlbi.com/articles/create-static-tables-in-dax-
using-the-datatable-function/.

Using variables in calculated tables
DAX variables can store scalar values, as well as tables. For example, rewrite one of the previous
table expressions as follows:

Tables Var =
VAR Table1 =
 UNION (
 ROW ("Color", "Red", "Value 1", 1),
 ROW ("Color", "Red", "Value 1", 2),
 ROW ("Color", "Green", "Value 1", 3),
 ROW ("Color", "Blue", "Value 1", 1)
)
VAR Table2 =
 UNION (
 ROW ("Color", "Green", "Value 2", 3),
 ROW ("Color", "Blue", "Value 2", 1),

From the Library of zhanl mamykova

https://msdn.microsoft.com/en-us/library/mt674921.aspx
https://msdn.microsoft.com/en-us/library/mt674921.aspx
https://www.sqlbi.com/articles/create-static-tables-in-dax-using-the-datatable-function/
https://www.sqlbi.com/articles/create-static-tables-in-dax-using-the-datatable-function/

ptg999

 Skill 2.2: Create calculated columns, calculated tables, and measures CHAPTER 2 171

 ROW ("Color", "Blue", "Value 2", 1),
 ROW ("Color", "Yellow", "Value 2", 2)
)
RETURN
 NATURALINNERJOIN (Table1, Table2)

While variables improve the readability of your code and potentially increase performance,
it is important to understand that variables are evaluated only once in the context in which
they are defined. This means that using CALCULATE or CALCULATETABLE on a variable has no
effect. To illustrate this behavior, create the following calculated tables:

LISTING 2-14 Buying Groups

Buying Groups = VALUES (Customer[Buying Group])

Buying Group

N/A

Tailspin Toys

Wingtip Toys

LISTING 2-15 Buying Group filtered to one value

Wingtip Toys =
CALCULATETABLE (
 VALUES (Customer[Buying Group]),
 Customer[Buying Group] = "Wingtip Toys"
)

Buying Group

Wingtip Toys

Note that the following expression returns a table that is different from the one that you
just reviewed in Listing 2-15:

Wingtip Toys VAR =
VAR BuyingGroups =
 VALUES (Customer[Buying Group])
RETURN
 CALCULATETABLE (
 BuyingGroups,
 Customer[Buying Group] = "Wingtip Toys"
)

Buying Group

N/A

Tailspin Toys

Wingtip Toys

From the Library of zhanl mamykova

ptg999

 172 CHAPTER 2 Modeling and visualizing data

The resulting table is the same as in Listing 2-14 because the BuyingGroups variable is evalu-
ated outside CALCULATETABLE, and then it becomes immutable. Therefore, putting the result
of this variable in a different context makes no difference to it.

Variables in calculated tables can be used to create more readable code that is still complex.
This allows you to save the time spent on creating calculated columns one by one; instead, you
can define them in one calculated table expression. For instance, you can create a full calendar
table in one expression using the GENERATE/ROW pattern developed by Marco Russo:

Calendar =
VAR Days =
 CALENDAR ("2018-1-1", "2020-12-31")
RETURN
 GENERATE (
 Days,
 VAR BaseDate = [Date]
 VAR MonthName = FORMAT (BaseDate, "MMM")
 VAR MonthNumber = MONTH (BaseDate)
 VAR BaseYear = YEAR (BaseDate)
 RETURN
 ROW (
 "Month", MonthName,
 "MonthNo", MonthNumber,
 "Year", BaseYear
)
)

Date Month MonthNo Year

1/01/2018 12:00:00 AM Jan 1 2018

2/01/2018 12:00:00 AM Jan 1 2018

3/01/2018 12:00:00 AM Jan 1 2018

… … … …

31/12/2020 12:00:00 AM Dec 12 2020

Note that in this case, you have multiple levels of VAR/RETURN constructs. At the top level,
you are defining the Days variable, which stores the table returned by the CALENDAR func-
tion. Use the Days variable in the outer RETURN expression. You have another VAR/RETURN
construct, where you define more variables; this time, the variables hold scalar values, because
GENERATE enables you to access the row context. The variables defined in the inner VAR/RE-
TURN construct are not accessible in the outer construct.

MORE INFO USING GENERATE AND ROW TOGETHER

For more detailed discussion on using the GENERATE/ROW pattern as an alternative to
ADDCOLUMNS, see Marco Russo’s article, “Using GENERATE and ROW instead of ADD-
COLUMNS in DAX” at https://www.sqlbi.com/articles/using-generate-and-row-instead-of-
addcolumns-in-dax/.

From the Library of zhanl mamykova

https://www.sqlbi.com/articles/using-generate-and-row-instead-of-addcolumns-in-dax/
https://www.sqlbi.com/articles/using-generate-and-row-instead-of-addcolumns-in-dax/

ptg999

 Skill 2.2: Create calculated columns, calculated tables, and measures CHAPTER 2 173

Measures
An important limitation of calculated columns is that not all values can be calculated with
them. For example, if you need to calculate the profit percentage, the calculated column for-
mula might look as follows:

Net Profit % = DIVIDE (Example[Net Profit], Example[Gross Profit])

While this formula calculates the profit percentage for each row of the table, it would be
incorrect to use the values from this column in a visual, because they would show an arithmetic
average at best. To illustrate the problem, consider the following two-row table called Exam-
ple, shown in Table 2-13.

TABLE 2-13 Sample profit values in the Example table

Product Gross Profit Net Profit Net Profit %

A 3,000 300 10%

B 2,000 1,000 50%

If you use the Net Profit % column from this table in a visual, you can only show 30%, the
average of 10% and 50%. This is not correct; a correct value would be (300 + 1,000) / (3,000 +
2,000) = 26%. In other words, you need to sum all Net Profit values first, then divide the result
by the sum of all Gross Profit values. While displaying this value in a calculated column is pos-
sible, this value will be incorrect as soon as you filter by Product. In this case, you need to create
a measure.

To create a measure, you can select Modeling > Calculations > New Measure. This will
create a measure in the currently selected table. Alternatively, you can right-click on a table in
which you want to create a measure and select New Measure. Either option will open the for-
mula bar where you can write your DAX formula. Once you are finished, you can either click on
the tick icon to the left of the formula bar or press Enter. If you create a measure in the wrong
table, you can move it by selecting the correct table by selecting Modeling > Properties >
Home Table.

MORE INFO CREATING MEASURES

For a video overview on how to create measures, see “Create calculated measures” at
https://docs.microsoft.com/en-us/power-bi/guided-learning/modeling#step-5.

Measures aggregate columns and tables, and they always work in filter context. For this
reason, there is no concept of current row in measures by default. A measure with the follow-
ing formula cannot be created:

Net Profit % = DIVIDE (Example[Net Profit], Example[Gross Profit])

From the Library of zhanl mamykova

https://docs.microsoft.com/en-us/power-bi/guided-learning/modeling#step-5

ptg999

Note that this is the same formula that works for a calculated column. This formula does not
work in a measure because DAX does not know what it should do with the columns that you
used. Because of this, any table or column used in a measure must be aggregated. The follow-
ing functions are the most popular aggregation functions:

 ■ SUM

 ■ AVERAGE

 ■ MIN

 ■ MAX

For instance, you can create a measure that sums all Net Profit column values as follows:

Total Net Profit = SUM (Example[Net Profit])

The functions listed above always take one argument: column reference. If you want to ref-
erence two columns in an aggregation function, you need to use the iterator functions, which
usually have X suffix. These are the most commonly used ones:

 ■ SUMX

 ■ AVERAGEX

 ■ MINX

 ■ MAXX

These functions always take two arguments: a table to iterate over and an expression to
evaluate for each row in row context. The aggregation functions without X suffix are often
syntactic sugar for their X-suffixed counterparts. The following two expressions are equivalent:

Total Net Profit = SUM (Example[Net Profit])

Total Net Profit = SUMX (Example, Example[Net Profit])

As mentioned above, the iterator functions can reference more than one column at a time.
For example, in the following expression we iterate over the Sale table, and, for each row, mul-
tiply Quantity by Unit Price. Finally, sum all of the resulting values:

Gross Sales = SUMX (Sale, Sale[Quantity] * Sale[Unit Price])

Because iterators generate row context, all row functions, such as RELATED, can be used:

Full Price Sales =
SUMX (
 Sale,
 Sale[Quantity] * RELATED ('Stock Item'[Recommended Retail Price])
)

In the Example table above, you can create the weighted profit percentage measure with
the following code:

Net Profit % =
DIVIDE (
 SUM (Example[Net Profit]),

From the Library of zhanl mamykova

ptg999

 Skill 2.2: Create calculated columns, calculated tables, and measures CHAPTER 2 175

 SUM (Example[Gross Profit])
)

While this measure works and displays the correct values, you can make the code more
readable and easier to maintain by splitting the calculation into three measures: Total Net
Profit, Total Gross Profit, and Net Profit %. Because you can reference other measures when
you create a measure, you can first create the Total Net Profit and Total Gross Profit measures,
then the Net Profit % one:

// Create these two measures first

Total Net Profit = SUM (Example[Net Profit])
Total Gross Profit = SUM (Example[Gross Profit])

// Create this measure last

Net Profit % = DIVIDE ([Total Net Profit], [Total Gross Profit])

At this stage, the Net Profit and Gross Profit columns can be hidden. This practice is called
fixing implicit measures; when you use a column in the values field well in a visual, an implicit
measure is created using the default aggregation. When you write measures with DAX, you are
creating explicit measures. Hiding the columns you aggregate in explicit measures is usually a
good practice because it prevents user confusion over which field should be used.

MORE INFO DEFAULT SUMMARIZATION

Default aggregation, also known as default summarization, will be covered in Skill 2.5: “Cre-
ate and format interactive visualizations.”

Measures vs. calculated columns
In many cases, the same values can be computed by using either a measure or a calculated
column. Calculated columns are computed when they are defined and at data refresh time. Be-
cause they are materialized in a data model, they consume RAM and disk space. Measures, on
the other hand, are calculated at query time, which means every time you interact with a visual,
a measure recalculates its value. For this reason, measures consume CPU resources.

As you have seen, some values, such as weighted averages, cannot be computed in a calcu-
lated column, which leaves creating measures as the only option. At the same time, there are
situations in which you should create a calculated column instead of a measure:

 ■ Slicing or filtering by values: it is currently impossible to put a measure into a slicer. If
you want to slice by newly created values, such as Price Category we created before, you
must create a calculated column and not a measure.

 ■ Writing CPU-intensive formulas: if your formula is very complex and it takes many
seconds to compute its values, this may result in a poor user experience. In this case,
it might be a good idea to precompute results in a calculated column or a calculated
table, and then aggregate the results with a measure.

From the Library of zhanl mamykova

ptg999

 176 CHAPTER 2 Modeling and visualizing data

NOTE MEASURES AND CALCULATED COLUMNS

For a more detailed discussion on the difference between calculated columns and measures
and which to use when, see “Calculated Columns and Measures in DAX” at https://www.
sqlbi.com/articles/calculated-columns-and-measures-in-dax/.

Counting values in DAX
There are several functions in DAX with which you can count values:

 ■ COUNT

 ■ COUNTA

 ■ COUNTAX

 ■ COUNTBLANK

 ■ COUNTROWS

 ■ COUNTX

 ■ DISTINCTCOUNT

One of the most frequently used functions is COUNTROWS, which we have already used
before. The function takes one parameter: a table expression. The following measure counts
the number of rows in the Sale table in the current filter context:

Sale Rows = COUNTROWS (Sale)

Because you are not limited to physical tables, you can also count rows in tables calculated
dynamically. The following measure returns the number of Calendar Year and Month combina-
tions in which we had sales:

Years and Months with Sales =
COUNTROWS (
 SUMMARIZE (
 Sale,
 'Date'[Calendar Year],
 'Date'[Month]
)
)

The COUNT function takes a column reference as the only argument and counts the num-
ber of non-blank values in a column. For example, the following measure counts the number of
non-blank Delivery Date Key values in the Sale table:

Count DeliveryDate = COUNT (Sale[Delivery Date Key])

The limitation of COUNT function is that it cannot count Boolean values. To count the num-
ber of non-blank values regardless of data type, you can use the COUNTA function.

From the Library of zhanl mamykova

https://www.sqlbi.com/articles/calculated-columns-and-measures-in-dax/
https://www.sqlbi.com/articles/calculated-columns-and-measures-in-dax/

ptg999

 Skill 2.2: Create calculated columns, calculated tables, and measures CHAPTER 2 177

MORE INFO COUNT AND COUNTA

For more information on the COUNT and COUNTA functions, see “COUNT Function (DAX)”
at https://msdn.microsoft.com/en-us/library/ee634791.aspx, and “COUNTA Function (DAX)”
at https://msdn.microsoft.com/en-us/library/ee634956.aspx.

The COUNTX and COUNTAX, the behavior of which correspond to COUNT and COUNTA,
respectively, allow you to count non-blank expressions when iterating over a table. Both tables
take two arguments: a table to iterate over and an expression to be evaluated in row context.
For instance, the following measure counts the number of rows in the Sale table where either
Invoice Date Key or Delivery Date Key is not blank:

CountX Invoice Delivery =
COUNTX (
 Sale,
 Sale[Invoice Date Key] + Sale[Delivery Date Key]
)

This measure returns the same results as COUNTROWS because in our data model, either
Invoice Date Key or Delivery Date Key will always be not blank for any row.

MORE INFO COUNTX AND COUNTAX

For more information on the COUNTX and COUNTAX functions, see “COUNTX Function
(DAX)” at: https://msdn.microsoft.com/en-us/library/ee634549.aspx, and “COUNTAX Func-
tion (DAX)” at: https://msdn.microsoft.com/en-us/library/ee634219.aspx.

To count blank values in a column, you can use the COUNTBLANK function, which always
received a column reference as its only parameter. You can count the number of blank Delivery
Date Key values with the following measure:

CountBlank DeliveryDate = COUNTBLANK (Sale[Delivery Date Key])

MORE INFO COUNTBLANK

For more information on the COUNTBLANK function, see “COUNTBLANK Function (DAX)”
at: https://msdn.microsoft.com/en-us/library/ee634230.aspx.

The sum of COUNT (and its equivalent COUNTA, COUNTX, and COUNTAX expressions) and
COUNTBLANK will always give you the same result as COUNTROWS. In Table 2-14, you can see
that the sum of Count DeliveryDate and CountBlank DeliveryDate is equal to Sale Rows:

From the Library of zhanl mamykova

https://msdn.microsoft.com/en-us/library/ee634791.aspx
https://msdn.microsoft.com/en-us/library/ee634956.aspx
https://msdn.microsoft.com/en-us/library/ee634549.aspx
https://msdn.microsoft.com/en-us/library/ee634219.aspx
https://msdn.microsoft.com/en-us/library/ee634230.aspx

ptg999

 178 CHAPTER 2 Modeling and visualizing data

TABLE 2-14 Sale Rows, Count DeliveryDate, and CountBlank DeliveryDate sliced by Calendar Year Label

Calendar Year Label Sale Rows Count DeliveryDate CountBlank DeliveryDate

284 284

CY2013 60678 60678

CY2014 65957 65957

CY2015 71828 71828

CY2016 29519 29519

Total 228266 227982 284

If you want to count the number of distinct values in a column, you can either use a combi-
nation of COUNTROWS and DISTINCT, or you can use DISTINCTCOUNT, which takes a column
reference as its only parameter. For instance, the following measure returns the number of
Stock Item Key values that have been sold at least once:

Sold StockItems = DISTINCTCOUNT (Sale[Stock Item Key])

Note that this measure returns different results compared to a measure that counts the dis-
tinct Stock Item Key values in the Stock Item table when sliced by Calendar Year Label or Brand.
Note also that when a column contains unique values only, you can safely use COUNTROWS
instead. The following two measures produce equivalent results:

Distinct StockItems = DISTINCTCOUNT('Stock Item'[Stock Item Key])

Distinct StockItems = COUNTROWS ('Stock Item')

TABLE 2-15 Sold StockItems and Distinct StockItems sliced by Calendar Year Label

Calendar Year Label Sold StockItems Distinct StockItems

164 672

CY2013 219 672

CY2014 219 672

CY2015 219 672

CY2016 228 672

Total 228 672

We see the same value for Distinct StockItems in this table because filter context from the
Date table does not pass to the Stock Item table. Note that because of the nature of distinct
counts, the results might not always be additive.

From the Library of zhanl mamykova

ptg999

 Skill 2.2: Create calculated columns, calculated tables, and measures CHAPTER 2 179

TABLE 2-16 Sold StockItems and Distinct StockItems sliced by Brand

Brand Sold StockItems Distinct StockItems

N/A 210 605

Northwind 18 67

Total 228 672

In Table 2-16, the difference between Sold StockItems and Distinct StockItems is that some
stock items do not sell at all, even though we have them in our data model.

Using CALCULATE in measures
The CALCULATE function, covered earlier in the chapter, is most often used in measures. Its
syntax is identical to CALCULATETABLE except it received a scalar expression as the first pa-
rameter instead of a table expression. Using CALCULATE in a measure without filters is useless
because every measure has an implicit CALCULATE wrapped around it. To illustrate this effect,
look at the Scale table and create the following calculated column and measure in it:

// Calculated column

Sum Column = SUM (Scale[Scale])

// Measure

Sum Measure = SUM (Scale[Scale])

Note that the formula used in two expressions is the same. As expected, Sum Column shows
the same value for each row. Now, create the following calculated column in the Scale table:

Sum Measure Column = [Sum Measure]

In this calculated column, you are referencing the Sum Measure only. Note the square
brackets around the measure name; this is the standard way to reference measures in DAX.
Now, the Scale table should look like the one in Figure 2-32.

From the Library of zhanl mamykova

ptg999

 180 CHAPTER 2 Modeling and visualizing data

FIGURE 2-32 The Scale table with Sum Column and Sum Measure Column created

Even though the formulas of Sum Measure and Sum Column are identical, the values in the
Sum Measure Column calculated column are different because each measure has an implicit
CALCULATE wrapped around it. In other words, you canrewrite the Sum Measure Column
expression as follows:

Sum Measure Column = CALCULATE (SUM (Scale[Scale]))

For this reason, CALCULATE becomes useful inside measures when you want to change the
filter context. As with CALCULATETABLE, you can pass Boolean expressions or tables as filter
parameters in CALCULATE. For example, you can create the All-time Profit measure, which
displays the all-time profit made, regardless of the selections made in the Date table:

// Create the Total Profit measure first

Total Profit = SUM (Sale[Profit])

// Create the All-time Profit measure that references Total Profit

All-time Profit = CALCULATE ([Total Profit], ALL ('Date'))

If you use this measure in a table visual alongside Total Profit, you will see results similar to
Figure 2-33.

From the Library of zhanl mamykova

ptg999

 Skill 2.2: Create calculated columns, calculated tables, and measures CHAPTER 2 181

FIGURE 2-33 All-time Profit alongside Total Profit sliced by Month

As expected, the measure shows the same value for each row, which is the same as the
grand total of Total Profit. While ALL removes the filter, we can also set the new filter context
at the same time. For example, here we show profit made in January regardless of the selected
Month. Figure 2-34 shows the expected result.

FIGURE 2-34 January Profit measure alongside Total Profit sliced by Month

From the Library of zhanl mamykova

ptg999

 182 CHAPTER 2 Modeling and visualizing data

When passing Boolean expressions as filters in CALCULATE, they are transformed into table
filters with FILTER and ALL combined. Because you only have the Month column visible, and
you sort it by the Calendar Month Number column, the following formula will not work cor-
rectly. You can see the values it returns in Figure 2-35.

January Profit Wrong = CALCULATE ([Total Profit], 'Date'[Month] = "January")

FIGURE 2-35 January Profit Wrong visualized

The formula does not return the expected results because when slicing by Month, Calen-
dar Month Number is also part of filter context because it sorts Month. To make the formula
work correctly, either list conditions for both columns, or iterate over a table that includes both
columns. Either of the following expressions returns the expected result:

// Including conditions for both columns

January Profit =
CALCULATE (
 [Total Profit],
 'Date'[Month] = "January",
 'Date'[Calendar Month Number] = 1
)

// Boolean expressions internally converted to table filters

January Profit =
CALCULATE (
 [Total Profit],
 FILTER (
 ALL ('Date'[Month]),
 'Date'[Month] = "January"
),
 FILTER (

From the Library of zhanl mamykova

ptg999

 Skill 2.2: Create calculated columns, calculated tables, and measures CHAPTER 2 183

 ALL ('Date'[Calendar Month Number]),
 'Date'[Calendar Month Number] = 1
)
)

// Alternative approach: iterating over a table that includes both columns

January Profit =
CALCULATE (
 [Total Profit],
 FILTER (
 ALL ('Date'[Month], 'Date'[Calendar Month Number]),
 'Date'[Month] = "January"
)
)

There is another function in the ALL family of functions, which we have not reviewed yet:
ALLSELECTED. This function received one optional argument: either a table or a column refer-
ence. According to the official documentation, this function removes filter context from rows
and columns of a table, while retaining all other context filters or explicit filters. In Power BI,
rows and columns of a table can be extended to mean axes, legends, and so on. To review the
effect of ALLSELECTED, follow these steps:

1. Create a new measure with the following formula:

Profit AllSelected = CALCULATE ([Total Profit], ALLSELECTED (‘Date’))

2. Create a table visual with the following fields:

 ■ Calendar Year Label

 ■ Total Profit

 ■ Profit AllSelected

3. Create a slicer with Calendar Year Label as its field.

4. Hold the Ctrl key and select CY2014 and CY2015.

At this stage, you should see figures like those shown in Figure 2-36.

FIGURE 2-36 Profit AllSelected used in a table

Note the values displayed by the Profit AllSelected measure; they are the same as the grand
total of Total Profit in this table. If you hold the Ctrl key and select CY2016 as well, the values
will change to the new grand total.

From the Library of zhanl mamykova

ptg999

 184 CHAPTER 2 Modeling and visualizing data

MORE INFO SLICERS IN POWER BI

For a video overview and more information on slicers in Power BI, including formatting op-
tions, see “Slicers in Power BI service (Tutorial)” at: https://docs.microsoft.com/en-us/power-
bi/power-bi-visualization-slicers.

Because the only parameter of ALLSELECTED is optional, you can use it with no parameters
as follows:

Profit AllSelected = CALCULATE ([Total Profit], ALLSELECTED ())

Used in this way, ALLSELECTED will consider filters from the entire data model, not just one
table or column.

MORE INFO ALLSELECTED

To learn more about the ALLSELECTED function, you can refer to the official documenta-
tion article, “ALLSELECTED Function (DAX)” at: https://msdn.microsoft.com/en-us/library/
gg492186.aspx.

For an exact explanation of how ALLSELECTED works, see an article by Alberto Ferrari, “Un-
derstanding ALLSELECTED” at: https://www.sqlbi.com/articles/understanding-allselected/.

Time Intelligence
Time Intelligence in DAX is an umbrella term that often refers to calculations that span over
predefined periods of time. DAX has more than 30 built-in functions to handle Time Intelli-
gence. An example of using Time Intelligence is the comparison of different periods—this year
versus last year, for instance.

Most Time Intelligence functions receive a date column as a parameter and return a table
that can be used as a filter in CALCULATE, while a small group of functions return scalar values.
The functions that return scalar values are all shorthand and can be rewritten using CALCU-
LATE and one of the functions that return a table.

For the Time Intelligence functions to work correctly, you must have a date table, which is
also known as a calendar table. The table should be similar to the Date table from the Wide
World Importers data model, where you have a row for each date between the earliest and
latest dates in your data model with no gaps. If your data source does not contain such a table,
you can create one yourself. We reviewed the CALENDAR and CALENDARAUTO functions
earlier in the chapter.

Another requirement for the calendar table is to be part of a one-to-many relationship with
a column of type date. This way, the Time Intelligence functions will work without needing
modifications.

From the Library of zhanl mamykova

https://docs.microsoft.com/en-us/power-bi/power-bi-visualization-slicers
https://docs.microsoft.com/en-us/power-bi/power-bi-visualization-slicers
https://msdn.microsoft.com/en-us/library/gg492186.aspx
https://msdn.microsoft.com/en-us/library/gg492186.aspx
https://www.sqlbi.com/articles/understanding-allselected/

ptg999

 Skill 2.2: Create calculated columns, calculated tables, and measures CHAPTER 2 185

MORE INFO TIME INTELLIGENCE IN POWER BI DESKTOP

Data models do not always contain date columns of type date. Sometimes, dates can be
stored as integers such as: 20180501 for 1 May 2018. If your data model has integers instead
of dates, you have several options:

 ■ Add ALL (‘Date’) filter to each expression

 ■ Add date columns to your data model

 ■ Create a dummy fact table

The last approach provides the least arduous way to make sure your Time Intelligence func-
tions will work correctly. For a detailed discussion on how to make sure the Time Intelligence
functions work in Power BI, see an article by Marco Russo, “Time Intelligence in Power BI
Desktop” at: https://www.sqlbi.com/articles/time-intelligence-in-power-bi-desktop/.

Once your calendar table satisfies the requirements, you can use the Time Intelligence
functions correctly. For example, to calculate year-to-date profit, you can use the DATESYTD
function and write the following formula:

Profit YTD = CALCULATE ([Total Profit], DATESYTD ('Date'[Date]))

If you use this measure alongside the Total Profit measure in a matrix visual and add Calen-
dar Year Label and Month as values, you can see a visual like in Figure 2-37.

FIGURE 2-37 Profit YTD shown alongside Total Profit and sliced by Calendar Year Label and Month

From the Library of zhanl mamykova

https://www.sqlbi.com/articles/time-intelligence-in-power-bi-desktop/

ptg999

 186 CHAPTER 2 Modeling and visualizing data

Note how the profit amount is being added month by month from January to Decem-
ber 2013, and then it is starts at January 2014 again. The DATESYTD has an optional second
parameter, which is the year-end date. With this parameter, you can specify a custom year end
date such as “30-6” or “6-30,” depending on your locale. This option is often used for calcula-
tions involving fiscal or financial years. When omitted, the default option is 31 December. For
instance, the following measure calculates year-to-date profit for the year ending on 30 June.
You can see the values it returns in Figure 2-38 below.

Profit FYTD = CALCULATE ([Total Profit], DATESYTD ('Date'[Date], "30-6"))

FIGURE 2-38 Profit FYTD shown alongside Profit YTD and Total Profit

Note how the calculation of year-to-date profit now starts over in July instead of January.

DATESYTD also has two sister functions: DATESMTD and DATESQTD, which return month-
to-date and quarter-to-date date tables, respectively. Both functions always receive one
parameter only, with no optional parameters.

Because DATESMTD, DATESQTD, and DATESYTD functions are almost always used as filters
for CALCULATE expression, there are three functions that simplify writing formulas with these
functions: TOTALMTD, TOTALQTD, and TOTALYTD. For example, you can rewrite the Profit
FYTD formula as follows:

Profit FYTD = TOTALYTD ([Total Profit], 'Date'[Date], "30-6")

The three functions receive two mandatory arguments: a scalar expression and the calen-
dar table date column. The optional third parameter can be used to pass an additional filter.
TOTALYTD can also receive an optional fourth parameter, the year-end date. When no third
parameter is specified, the year-end date can be used as the third parameter.

From the Library of zhanl mamykova

ptg999

 Skill 2.2: Create calculated columns, calculated tables, and measures CHAPTER 2 187

MORE INFO PERIOD TO DATE FUNCTIONS

For more information on and examples of usage of the period to date functions, see:

 ■ “DATESMTD Function (DAX)” at https://msdn.microsoft.com/en-us/library/ee634359.aspx

 ■ “DATESQTD Function (DAX)” at https://msdn.microsoft.com/en-us/library/ee634901.aspx

 ■ “DATESYTD Function (DAX)” at https://msdn.microsoft.com/en-us/library/ee634221.aspx

 ■ “TOTALMTD Function (DAX)” at https://msdn.microsoft.com/en-us/library/ee634560.aspx

 ■ “TOTALQTD Function (DAX)” at https://msdn.microsoft.com/en-us/library/ee634579.aspx

 ■ “TOTALYTD Function (DAX)” at https://msdn.microsoft.com/en-us/library/ee634400.aspx

With DAX, it is possible to calculate semi-additive measures such as opening and closing
balances. For these purposes, there are monthly, quarterly, and yearly functions for both open-
ing and closing balances:

 ■ OPENINGBALANCEMONTH

 ■ OPENINGBALANCEQUARTER

 ■ OPENINGBALANCEYEAR

 ■ CLOSINGBALANCEMONTH

 ■ CLOSINGBALANCEQUARTER

 ■ CLOSINGBALANCEYEAR

Each of the six functions received two required parameters: a scalar expression and the date
column of a calendar table. A filter can be passed as the optional third parameter. Also, the
yearly functions can receive an optional fourth parameter specifying the year-end date.

For review purposes, calculate the opening and closing month balance of profit as follows,
even if the measures makes no sense financially.

Opening Profit = OPENINGBALANCEMONTH ([Total Profit], 'Date'[Date])

Closing Profit = CLOSINGBALANCEMONTH ([Total Profit], 'Date'[Date])

The OPENINGBALANCEMONTH function calculates the scalar value used as the first param-
eter for the last day of the previous month. In general, the opening balance functions return
the same values as closing balance functions for the previous month. For example, the opening
monthly balance for May 2018 will be the same as the closing monthly balance for April 2018.
Both measures are shown in Figure 2-39.

From the Library of zhanl mamykova

https://msdn.microsoft.com/en-us/library/ee634359.aspx
https://msdn.microsoft.com/en-us/library/ee634901.aspx
https://msdn.microsoft.com/en-us/library/ee634221.aspx
https://msdn.microsoft.com/en-us/library/ee634560.aspx
https://msdn.microsoft.com/en-us/library/ee634579.aspx
https://msdn.microsoft.com/en-us/library/ee634400.aspx

ptg999

 188 CHAPTER 2 Modeling and visualizing data

FIGURE 2-39 Opening Profit and Closing Profit shown alongside Total Profit

From the Library of zhanl mamykova

ptg999

 Skill 2.2: Create calculated columns, calculated tables, and measures CHAPTER 2 189

MORE INFO OPENING AND CLOSING BALANCE FUNCTIONS

For more information on the opening and closing balance functions, see:

 ■ “OPENINGBALANCEMONTH Function (DAX)” at https://msdn.microsoft.com/
en-us/library/ee634224.aspx

 ■ “OPENINGBALANCEQUARTER Function (DAX)” at https://msdn.microsoft.com/
en-us/library/ee634931.aspx

 ■ “OPENINGBALANCEYEAR Function (DAX)” a: https://msdn.microsoft.com/
en-us/library/ee634886.aspx

 ■ “CLOSINGBALANCEMONTH Function (DAX)” at https://msdn.microsoft.com/
en-us/library/ee634215.aspx

 ■ “CLOSINGBALANCEQUARTER Function (DAX)” at https://msdn.microsoft.com/
en-us/library/ee634876.aspx

 ■ “CLOSINGBALANCEYEAR Function (DAX)” at https://msdn.microsoft.com/en-us/
library/ee634562.aspx

The opening and closing balance functions we have just reviewed return scalar values.
There are DAX functions that return table functions for beginnings and ends of periods:

 ■ STARTOFMONTH

 ■ STARTOFQUARTER

 ■ STARTOFYEAR

 ■ ENDOFMONTH

 ■ ENDOFQUARTER

 ■ ENDOFYEAR

Each function in the list above receives one required parameter: the date column from a
calendar table. As before, the yearly functions can also receive a year-end date as an optional
parameter. For example, you can rewrite the Closing Profit measure using the ENDOFMONTH
function as follows:

Closing Profit = CALCULATE ([Total Profit], ENDOFMONTH ('Date'[Date]))

The Opening Profit measure cannot be rewritten using only CALCULATE and STARTOF-
MONTH. Use a function that can shift dates because the opening balance of a measure is its
closing balance for the previous month. The most often used function is DATEADD, which
receives exactly three arguments: the dates column of a calendar table, number of intervals,
and the interval. The interval can be one of the following:

 ■ DAY

 ■ MONTH

 ■ QUARTER

 ■ YEAR

From the Library of zhanl mamykova

https://msdn.microsoft.com/en-us/library/ee634224.aspx
https://msdn.microsoft.com/en-us/library/ee634224.aspx
https://msdn.microsoft.com/en-us/library/ee634931.aspx
https://msdn.microsoft.com/en-us/library/ee634931.aspx
https://msdn.microsoft.com/en-us/library/ee634886.aspx
https://msdn.microsoft.com/en-us/library/ee634886.aspx
https://msdn.microsoft.com/en-us/library/ee634215.aspx
https://msdn.microsoft.com/en-us/library/ee634215.aspx
https://msdn.microsoft.com/en-us/library/ee634876.aspx
https://msdn.microsoft.com/en-us/library/ee634876.aspx
https://msdn.microsoft.com/en-us/library/ee634562.aspx
https://msdn.microsoft.com/en-us/library/ee634562.aspx

ptg999

 190 CHAPTER 2 Modeling and visualizing data

DATEADD is not the only function that can shift dates. There is a similar function, PARAL-
LELPERIOD, which receives the same arguments and DATEADD. However, PARALLELPERIOD
cannot receive DAY as the fourth parameter. The difference between the two functions is
that DATEADD shifts dates for each date in the current filter context, while PARALLELPERIOD
returns a full parallel period as a result. To illustrate the difference between the two functions,
create the following two functions:

Profit Last Month DateAdd =
CALCULATE (
 [Total Profit],
 DATEADD ('Date'[Date], -1, MONTH)
)

Profit Last Month ParallelPeriod =
CALCULATE (
 [Total Profit],
 PARALLELPERIOD ('Date'[Date], -1, MONTH)
)

The two measures are shown side by side in Figure 2-40.

FIGURE 2-40 Profit Last Month DateAdd and Profit Last Month ParallelPeriod used in a matrix visual

From the Library of zhanl mamykova

ptg999

 Skill 2.2: Create calculated columns, calculated tables, and measures CHAPTER 2 191

Note how the two measures display the same results at the month level, but the values are
different at date level: DATEADD displays a different value for each date, while PARALLELPE-
RIOD shows the same value for each date within one month. Also, note that the value of the
DATEADD measure is the same from 28 to 31 March 2013 because the last date in February
2013 is 28 February 2013, and dates from 28 to 31 March 2013 are all treated as the last day of
the month when compared to the previous month.

In addition to DATEADD and PARALLELPERIOD, there are the following functions with de-
scriptive names that shift by a predefined period:

 ■ SAMEPERIODLASTYEAR: same as DATEADD (Dates, -1, YEAR)

 ■ PREVIOUSDAY

 ■ PREVIOUSMONTH

 ■ PREVIOUSQUARTER

 ■ PREVIOUSYEAR

 ■ NEXTDAY

 ■ NEXTMONTH

 ■ NEXTQUARTER

 ■ NEXTYEAR

This list of functions receives the date column of a calendar table as the only required
parameter. PREVIOUSYEAR and NEXTYEAR can also receive the year-end date as the optional
second parameter.

You can combine some Time Intelligence functions. For example, using either DATEADD or
PARALLELPERIOD, you can rewrite the Opening Profit measure as follows:

Opening Profit DateAdd =
CALCULATE (
 [Total Profit],
 DATEADD (STARTOFMONTH ('Date'[Date]), -1, DAY)
)

Note that the order in which you nest functions matters. While the following measure
works, it returns incorrect results, as seen in Figure 2-41:

Opening Profit DateAdd Wrong =
CALCULATE (
 [Total Profit],
 STARTOFMONTH (DATEADD ('Date'[Date], -1, DAY))
)

From the Library of zhanl mamykova

ptg999

 192 CHAPTER 2 Modeling and visualizing data

FIGURE 2-41 Opening Profit DateAdd Wrong shown alongside the correct Opening Profit measure

The reason why this is not correct is that the dates are shifted back first, then STARTOF-
MONTH returns the first date of the month of the shifted date.

MORE INFO TIME INTELLIGENCE DAX FUNCTIONS

For more information on the functions discussed above, see “Time Intelligence Functions
(DAX)” at https://msdn.microsoft.com/en-us/library/ee634763.aspx.

If you need to calculate a value for the first or last date in the current filter context, you can
use the FIRSTDATE or LASTDATE function, respectively. Both functions can be used as filters in
CALCULATE. The functions do not override the currently selected dates. More specifically, the
two functions can be rewritten using FILTER and VALUES as follows:

// Same as FIRSTDATE

FILTER (
 VALUES ('Date'[Date]),
 'Date'[Date] = MIN ('Date'[Date])
)

From the Library of zhanl mamykova

https://msdn.microsoft.com/en-us/library/ee634763.aspx

ptg999

 Skill 2.2: Create calculated columns, calculated tables, and measures CHAPTER 2 193

// Same as LASTDATE

FILTER (
 VALUES ('Date'[Date]),
 'Date'[Date] = MAX ('Date'[Date])
)

MORE INFO FIRSTDATE AND LASTDATE

For more information on FIRSTDATE and LASTDATE, see a blog article by Marco Russo, “Dif-
ference between LASTDATE and MAX for semi-additive measures in #DAX” at http://sqlblog.
com/blogs/marco_russo/archive/2013/10/22/difference-between-lastdate-and-max-for-
semi-additive-measures-in-dax.aspx.

If you need to filter by a custom date interval, you can use DATESBETWEEN. The function
receives three arguments: the date column of a calendar table, a start date, and an end date.
For example, calculate Total Profit between 10 June 2013 and 5 April 2014, inclusive, as follows:

Profit Custom Period =
CALCULATE (
 [Total Profit],
 DATESBETWEEN (
 'Date'[Date],
 DATE (2013, 10, 6),
 DATE (2014, 4, 5)
)
)

The measure shows the same value regardless of the selected date.

MORE INFO USING DATESBETWEEN

For more details on the DATESBETWEEN function, see “DATESBETWEEN Function (DAX)” at
https://msdn.microsoft.com/en-us/library/ee634557.aspx.

If your custom time interval is based on days, months, quarters, or years, you can use the
DATESINPERIOD function. The function receives exactly three arguments: the date column
from a calendar table, a start date, number of intervals, and the interval, which can be DAY,
MONTH, QUARTER, or YEAR. For instance, you can calculate the rolling monthly profit with the
following measure:

Rolling Monthly Profit =
CALCULATE (
 [Total Profit],
 DATESINPERIOD (
 'Date'[Date],
 MAX ('Date'[Date]),
 -1,
 MONTH
)
)

From the Library of zhanl mamykova

http://sqlblog.com/blogs/marco_russo/archive/2013/10/22/difference-between-lastdate-and-max-for-semi-additive-measures-in-dax.aspx
http://sqlblog.com/blogs/marco_russo/archive/2013/10/22/difference-between-lastdate-and-max-for-semi-additive-measures-in-dax.aspx
http://sqlblog.com/blogs/marco_russo/archive/2013/10/22/difference-between-lastdate-and-max-for-semi-additive-measures-in-dax.aspx
https://msdn.microsoft.com/en-us/library/ee634557.aspx

ptg999

 194 CHAPTER 2 Modeling and visualizing data

MORE INFO DATESINPERIOD

For more details and examples on the DATESINPERIOD function, see “DATESINPERIOD Func-
tion (DAX)” at https://msdn.microsoft.com/en-us/library/ee634539.aspx.

MORE INFO TIME INTELLIGENCE IN DAX

For an overview of Time Intelligence in DAX, see a blog article by Matt Allington: “DAX Time
Intelligence Explained” at https://exceleratorbi.com.au/dax-time-intelligence-beginners/,

For a video overview, see a presentation Alberto Ferrari: “Time Intelligence in DAX” at
https://www.sqlbi.com/tv/time-intelligence-in-dax-sqlbits-x/.

Using inactive relationships
As reviewed earlier, there can be no more than one active physical relationship between two
tables. Between the Sale and Date tables there are two active relationships:

 ■ Active one from Sale (Delivery Date Key) to Date (Date)

 ■ Inactive one from Sale (Invoice Date Key) to Date (Date)

By default, all values we aggregate in the Sale table are going to be filtered by Delivery Date
Key. To use the inactive relationship, activate it programmatically with DAX using the USERE-
LATIONSHIP function. This function receives two parameters, which are the columns used in a
relationship. To calculate Total Profit by Invoice Date Key, you can write the following measure
formula, as shown in Figure 2-42.

Total Profit by Invoice Date =
CALCULATE (
 [Total Profit],
 USERELATIONSHIP ('Date'[Date], Sale[Invoice Date Key])
)

FIGURE 2-42 Total Profit by Invoice Date used in a table visual

Note that the Total Profit by Invoice Date measure is blank when Calendar Year Label is
blank. This is because no Invoice Date Key value is blank, which means there is no blank row
automatically added to the Date table when filtering by Invoice Date Key instead of Delivery
Date Key.

From the Library of zhanl mamykova

https://msdn.microsoft.com/en-us/library/ee634539.aspx
https://exceleratorbi.com.au/dax-time-intelligence-beginners/
https://www.sqlbi.com/tv/time-intelligence-in-dax-sqlbits-x/

ptg999

 Skill 2.2: Create calculated columns, calculated tables, and measures CHAPTER 2 195

The order of the columns used as parameters does not matter, though there must exist a
relationship between two columns. Otherwise, you will get the error seen in Figure 2-43.

FIGURE 2-43 Error message when using USERELATIONSHIP without a relationship

MORE INFO USING USERELATIONSHIP

For more information on the USERELATIONSHIP function, see “USERELATIONSHIP Function
(DAX)” at https://msdn.microsoft.com/en-us/library/hh230952.aspx.

Using SELECTEDVALUE
The SELECTEDVALUE function receives a column reference as the first parameter, which is
required, and SELECTEDVALUE receives a default value as the optional second parameter. The
function returns a column value if there is only one in the current filter context. Otherwise, it
returns the default value. The function acts as a shortcut for the following syntax:

MyParameter Value =
IF (
 HASONEVALUE (MyParameter[MyParameter]),
 VALUES (MyParameter[MyParameter]),
 5
)

The HASONEVALUE function checks whether the input column has only one value in the
current filter context. If it does, then the VALUES function, which returns a table, is converted
into a scalar value because it has only one row and one column. If the input column has more
than one value, the default value—in this case, 5—is returned. This function can be useful
when you want to change a metric based on the selection. For instance, you can scale the Total
Profit value based on the selected value in the Scale column of the Scale table with the follow-
ing measure:

Profit Scaled = [Total Profit] / SELECTEDVALUE (Scale[Scale], 1)

If you put the Scale column values on rows in a matrix visual and Total Profit and Profit
Scaled as values, you should see a visual similar to Figure 2-44.

From the Library of zhanl mamykova

https://msdn.microsoft.com/en-us/library/hh230952.aspx

ptg999

 196 CHAPTER 2 Modeling and visualizing data

FIGURE 2-44 Total Profit and Profit Scaled put against the Scale column

Note how in Figure 2-44, Total Profit shows the same value for each Scale value because
there is no relationship between Scale and any other table. However, Profit Scaled shows differ-
ent values because it reads the currently selected value of Scale from the current filter context
by using SELECTEDVALUE. Also, note two things:

 ■ First, Total Profit and Profit Scaled have the same value when the Scale is 1.

 ■ Second, Profit Scaled at the total level shows the same value as when the Scale is 1 be-
cause at the total level, there is no filter on Scale, therefore, the default value of 1 is used.

MORE INFO SELECTEDVALUE

For more information on SELECTEDVALUE and more examples of how SELECTEDVALUE can
be used, see an article by Marco Russo, “Using the SELECTEDVALUE function in DAX” at
https://www.sqlbi.com/articles/using-the-selectedvalue-function-in-dax/.

FIRSTNONBLANK and LASTNONBLANK
The FIRSTNONBLANK and LASTNONBLANK functions work in the same way except the former
returns the first non-blank value, while the latter returns the last non-blank value. For this rea-
son, we are reviewing only FIRSTNONBLANK.

FIRSTNONBLANK returns a table with one row and one column, which can be used as a filter
in CALCULATE. The function always takes two parameters: a column reference and an expres-
sion to check for blanks. You can also use single-column table expressions in FIRSTNONBLANK.
To illustrate how the function works, calculate first non-blank Total Profit value in the Date
column with the following measure:

First Profit =
CALCULATE (
 [Total Profit],
 FIRSTNONBLANK (
 'Date'[Date],
 [Total Profit]
)
)

While the first date we have in the Date column is 1 January 2013, there is no Total Profit
value for that date. The first date with Total Profit is 2 January 2013, which is what the measure
will display.

From the Library of zhanl mamykova

https://www.sqlbi.com/articles/using-the-selectedvalue-function-in-dax/

ptg999

 Skill 2.2: Create calculated columns, calculated tables, and measures CHAPTER 2 197

FIRSTNOBLANK is an iterator, which means it evaluates its expression in row context. In the
First Profit measure above, Total Profit was evaluated for each row of the Date column. It is
important to understand that if you used SUM (Sale[Profit]) instead of [Total Profit], you
would get incorrect results. Namely, because there would be no context transition triggered by
implicit CALCULATE wrapped around Total Profit, every row would get the same value, result-
ing in a blank value—Total Profit for 1 January 2013.

MORE INFO FIRSTNONBLANK AND LASTNONBLANK

For more information on the two functions, see “FIRSTNONBLANK Function (DAX)” at
https://msdn.microsoft.com/en-us/library/ee634210.aspx, and “LASTNONBLANK Function
(DAX)” at https://msdn.microsoft.com/en-us/library/ee634247.aspx.

For a detailed discussion on how the functions work, see an article by Matt Allington, “LAST-
NONBLANK Explained” at https://exceleratorbi.com.au/lastnonblank-explained/.

Passing filters from disconnected tables
In some cases, you may need to pass filters from disconnected tables. For example, it might be
too expensive to create a column with concatenated keys to create a physical relationship. In
this case, it might make sense to use virtual relationships.

One way you can pass filters from one table to another is by using INTERSECT. As discussed
previously, this table returns a table with rows that exist in both tables.

To see the effect of using a virtual relationship, follow the next steps:

1. Make the following two relationships inactive:

 ■ Between Date and Calendar Year tables

 ■ Between Customer and Bill To Customer tables

2. Create the following three measures in the Target table:

Total Target Quantity = SUM (Target[Target Quantity])
Total Target Amount = SUM (Target[Target Amount Excluding Tax])
Target Quantity Intersect =
CALCULATE (
 [Total Target Quantity],
 INTERSECT (
 VALUES (Target[Calendar Year]),
 VALUES (‘Date’[Calendar Year])
)
)

3. Hide the Target Quantity and Target Amount Excluding Tax columns.

At this stage, if you double-click on the arrow next to the Fields pane title (above the search
bar), the Target table should acquire a new icon, which is similar to the measure icon. This
means that all the visible fields in this table are measures.

From the Library of zhanl mamykova

https://msdn.microsoft.com/en-us/library/ee634210.aspx
https://msdn.microsoft.com/en-us/library/ee634247.aspx
https://exceleratorbi.com.au/lastnonblank-explained/

ptg999

 198 CHAPTER 2 Modeling and visualizing data

If you create a matrix visual with Calendar Year Label on rows and Total Target Quantity and
Target Quantity Intersect as values, you will see a visual similar to Figure 2-45.

FIGURE 2-45 Calendar Year Label, Total Target Quantity, and Target Quantity Intersect in matrix visual

Note how Total Target Quantity has the same value regardless of the Calendar Year Label
value. This is because we deactivated the relationship between the Date and Calendar Year
table, meaning that filters from the Date table do not reach the Target table. However, the
Target Quantity Intersect measure shows different values for each Calendar Year Label because
it is being filtered by a virtual relationship created with INTERSECT.

It is important to note that the order in which you pass the parameters to INTERSECT mat-
ters. The following measure returns the same values as Total Target Quantity, which is the same
value for each year:

Target Quantity Intersect Wrong =
CALCULATE (
 [Total Target Quantity],
 INTERSECT (
 VALUES ('Date'[Calendar Year]),
 VALUES (Target[Calendar Year])
)
)

From the Library of zhanl mamykova

ptg999

 Skill 2.2: Create calculated columns, calculated tables, and measures CHAPTER 2 199

When you create virtual relationships with INTERSECT, the table you want to pass filters
from should come first, while the table you want to filter should come second. In our example
so far, we have passed filters from the Date table only, but not from the Customer. While we
could do this by adding another INTERSECT filter to CALCULATE, another way is to use ALL and
SUMMARIZE. The following measures return the same results:

Target Quantity Intersect Values =
CALCULATE (
 [Total Target Quantity],
 INTERSECT (
 VALUES (Target[Calendar Year]),
 VALUES ('Date'[Calendar Year])
),
 INTERSECT (
 VALUES (Target[Bill To Customer]),
 VALUES (Customer[Bill To Customer])
)
)

Target Quantity Intersect Summarize =
CALCULATE (
 [Total Target Quantity],
 INTERSECT (
 ALL (Target[Calendar Year], Target[Bill To Customer]),
 SUMMARIZE (Sale, 'Date'[Calendar Year], Customer[Bill To Customer])
)
)

It’s also possible to create virtual relationships using the TREATAS function. The function
receives at least two arguments: a table to pass filters from, and one or more columns to pass
filters to. For instance, rewrite the preceding measures in the following way:

Target Quantity TreatAs =
CALCULATE (
 [Total Target Quantity],
 TREATAS (
 SUMMARIZE (Sale, 'Date'[Calendar Year], Customer[Bill To Customer]),
 Target[Calendar Year],
 Target[Bill To Customer]
)
)

If you now add Bill To Customer from the Customer table to the matrix and the three mea-
sures created above, you should see a matrix visual similar to Figure 2-46.

From the Library of zhanl mamykova

ptg999

 200 CHAPTER 2 Modeling and visualizing data

FIGURE 2-46 Measures with virtual relationships

Note how Total Target Quantity still displays the same value for each row. At the beginning
of this exercise, we purposefully deactivated relationships between Date and Calendar Year
and between Customer and Bill To Customer. These relationships were deactivated to highlight
the effect that virtual relationships can have. While virtual relationships can be very power-
ful, if you have an option to create physical relationships, as in our case, it is best to pass filters
using physical relationships instead of virtual ones. Your code will be much shorter, and it will
also perform much better. If at this point, you activate the relationships again, the same matrix
visual will looks like the one shown in Figure 2-47.

FIGURE 2-47 The same matrix visual after activating relationships

From the Library of zhanl mamykova

ptg999

 Skill 2.2: Create calculated columns, calculated tables, and measures CHAPTER 2 201

When using activated relationships, the Total Target Quantity measure displays the same
values as the other three measures because the filters from the Date and Customer table now
reach the Target table.

MORE INFO USING TREATAS AND ITS ALTERNATIVES

For more information on the TREATAS function, see “TREATAS Function” at https://msdn.
microsoft.com/en-us/library/mt825214.aspx.

For a detailed discussion of using INTERSECT and TREATAS to propagate filters in DAX,
including performance considerations, see an article by Marco Russo, “Propagating filters
using TREATAS in DAX” at https://www.sqlbi.com/articles/propagate-filters-using-treatas-in-
dax/.

Quick measures
Quick measures is a Power BI Desktop feature that lets you create explicit measures without
writing DAX. To create a Quick Measure, you can either select Home > Calculations > New
Quick Measure, or right-click on a table where you want to create the measure and select
New quick measure. The window that opens with the Calculation drop-down list expanded is
shown in in Figure 2-48.

FIGURE 2-48 Quick Measures window

From the Library of zhanl mamykova

https://msdn.microsoft.com/en-us/library/mt825214.aspx
https://msdn.microsoft.com/en-us/library/mt825214.aspx
https://www.sqlbi.com/articles/propagate-filters-using-treatas-in-dax/
https://www.sqlbi.com/articles/propagate-filters-using-treatas-in-dax/

ptg999

 202 CHAPTER 2 Modeling and visualizing data

Currently, there are 27 Quick Measures grouped into six categories.

 ■ Aggregate per category

 ■ Average per category

 ■ Variance per category

 ■ Max per category

 ■ Min per category

 ■ Weighted average per category

 ■ Filters

 ■ Filtered value

 ■ Difference from filtered value

 ■ Percentage difference from filtered value

 ■ Sales from new customers

 ■ Time intelligence

 ■ Year-to-date total

 ■ Quarter-to-date total

 ■ Month-to-date total

 ■ Year-over-year change

 ■ Quarter-over-quarter change

 ■ Month-over-month change

 ■ Rolling average

 ■ Totals

 ■ Running total

 ■ Total for category (filters applied)

 ■ Total for category (filters not applied)

 ■ Mathematical operations

 ■ Addition

 ■ Subtraction

 ■ Multiplication

 ■ Division

 ■ Percentage difference

 ■ Correlation coefficient

 ■ Text

 ■ Start rating

 ■ Concatenated list of values

From the Library of zhanl mamykova

ptg999

 Skill 2.2: Create calculated columns, calculated tables, and measures CHAPTER 2 203

After you select a calculation, you will need to drag fields in the required field wells. If you
opened the Quick Measures window by right-clicking on a measure and selecting New Quick
Measure, the measure you right-clicked on would be automatically used in one of the field
wells. For example, if you right-click on the Total Profit measure and select New Quick Measure,
then select Year-over-year change in the Calculation drop-down list, you can see the Quick
Measures window transform as shown in Figure 2-49.

FIGURE 2-49 Quick Measures window with Year-over-Year Change selected

While the Number of periods field displays 1 by default, it means 1 period back, which is
different from the way DATEADD works. To finalize this quick measure, drag the Date column
from the Date table to the Date field well, then click OK. After doing so, a new measure, Total
Profit YoY%, is created If you select it in the Fields pane, you will see its DAX code:

Total Profit YoY% =
IF(
 ISFILTERED('Date'[Date]),
 ERROR("Time intelligence quick measures can only be grouped or filtered by the

From the Library of zhanl mamykova

ptg999

 204 CHAPTER 2 Modeling and visualizing data

Power BI-provided date hierarchy or primary date column."),
 VAR __PREV_YEAR = CALCULATE([Total Profit], DATEADD('Date'[Date].[Date], -1,
YEAR))
 RETURN
 DIVIDE([Total Profit] - __PREV_YEAR, __PREV_YEAR)
)

The current limitation of time-related Quick Measures is that they rely on the Power BI-pro-
vided date hierarchies. As you can see, inside DATEADD there is a reference to the ‘Date’[Date].
[Date] column. This column is part of a hidden automatic date hierarchy created by Power BI.
These hierarchies are covered in “Skill 2.4: Create hierarchies.”

Another noteworthy aspect of the formula is the use of the ERROR function. This function
can purposefully return an error with user-defined text. For example, if you filter by the Date
column instead of using the automatic date hierarchy, the visual will display the “Can’t display
the visual” message along with the “See details” hyperlink. Clicking on the hyperlink will open
the “Couldn’t load the data for this visual” window shown in Figure 2-50.

FIGURE 2-50 A window with user-defined error message

Quick measures are available where data modeling is available. Also, quick measures may
be available with some SQL Server Analysis Services (SSAS) live connections, as well as Power
BI Service live connection. With SSAS, the supported versions of the engine are Tabular and
Azure Analysis Services. Quick measures are not available in SSAS Multidimensional mode.
Furthermore, not all quick measures are supported by each version of the Tabular engine; this
is because some quick measures use functions that are not available in the early SSAS versions.

Because Quick Measures is a feature that is in constant development, your experience might
not exactly match the above figures, but the principles with which you create a Quick Measure
remain the same.

The reader is encouraged to try other quick measures to get familiarized with how each of
them works.

From the Library of zhanl mamykova

ptg999

 Skill 2.2: Create calculated columns, calculated tables, and measures CHAPTER 2 205

MORE INFO QUICK MEASURES

For more details on the Quick Measures feature of Power BI, including limitations, consider-
ations, and other examples, see “Use Quick measures to easily perform common and power-
ful calculations” at https://docs.microsoft.com/en-us/power-bi/desktop-quick-measures.

Use What-if parameters
If you want to create a parameter that you can change with a slicer and see how changing it
affects some of your calculations, you can use the What-if feature of Power BI Desktop. This
feature allows you to create a calculated table with a pre-defined range, a slicer to select a
value from the table, and a measure that captures the selected parameter value.

The parameter created using the What-if feature is a DAX parameter, and it is different
from the parameters created in Power Query Editor. Editing the latter prompts data refresh
while selecting a DAX parameter value in a slicer allows you to alter its selected value without
refreshing your dataset.

To create a parameter using this feature, select Modeling > What-If > New Parameter.
This feature can only be accessed in the Report view. The What-if parameter dialog appears, as
shown in Figure 2-51.

FIGURE 2-51 What-if parameter window

The parameter name will set the name of both the parameter table and its only column.
The data types available in the drop-down list are Whole number, Decimal number, and Fixed
decimal number. The Minimum, Maximum, and Increment values will be used in the GENERA-
TESERIES function, which creates the parameter table, as the first, second, and third arguments,
respectively. The Default value will be used in the selected value measure, which uses the

From the Library of zhanl mamykova

https://docs.microsoft.com/en-us/power-bi/desktop-quick-measures

ptg999

 206 CHAPTER 2 Modeling and visualizing data

SELECTEDVALUES function and is covered next. By default, a slicer with the parameter will be
added to the active page.

If you call your parameter MyParameter and use a default value of 5, the selected value
measure formula will be as follows:

MyParameter Value = SELECTEDVALUE(MyParameter[MyParameter], 5)

When you put the measure into a card visual alongside the slicer created by the What-if
feature, your results should be similar to Figure 2-52.

FIGURE 2-52 MyParameter used in a slicer and MyParameter Value used in a card visual

If you then make a selection in the slicer, the card visual will display the selected value. Fur-
thermore, you can use the MyParameter Value measure in another measure and immediately
see the effect of your changing the parameter value with the slicer. For example, you can create
the following measure:

Discounted Profit = [Total Profit] * (1 - [MyParameter Value] / 100)

As you move the parameter slider, you will see the Discounted Profit value change.

MORE INFO WHAT-IF PARAMETERS

For more details on the What-if parameters feature of Power BI, see “Create and use a What
if parameter to visualize variables in Power BI Desktop” at https://docs.microsoft.com/en-us/
power-bi/desktop-what-if.

Skill 2.3: Measure performance by using KPIs, gauges,
and cards

Organizations usually have targets towards which they work. These targets, when compared to
the actual figures, are often called Key Performance Indicators, or KPIs. KPIs help organizations
with tracking how close they are to achieving their targets, as well as which areas fare better
compared to others. In Power BI, there are several ways to visualize targets and actual figures.
For example, you can display a value by itself in a Card visual, or you can use the KPI or Gauge
visuals to compare actual and target figures.

If you want to follow the examples in this section, you can open the CH02-2.3Start.pbix file
from the companion files folder.

From the Library of zhanl mamykova

https://docs.microsoft.com/en-us/power-bi/desktop-what-if
https://docs.microsoft.com/en-us/power-bi/desktop-what-if

ptg999

 Skill 2.3: Measure performance by using KPIs, gauges, and cards CHAPTER 2 207

This section covers how to:
 ■ Calculate the actual

 ■ Calculate the target

 ■ Calculate actual to target

 ■ Configure values for gauges

 ■ Use the format settings to manually set values

Calculate the actual
In general, every KPI has at least two parts: the base, or actual figure, and the target figure. In
the data model that we have created so far, we already have the necessary data to calculate the
actual. In the Sale table, there is the Total Excluding Tax column, from which you can create an
explicit measure:

Total Actual Amount = SUM (Sale[Total Excluding Tax])

You can now use this measure in a Card visual. To do this, click on the Card visual icon in the
Visualizations pane and then click on the check box next to the Total Actual Amount measure.
Alternatively, drag the measure into the Fields field well below the visualizations icons. Another
way to create a visual is to drag a measure onto the canvas or click the check box next to it,
which will create a clustered column chart. You can then convert this visual into a Card visual by
clicking on its icon in the Visualizations pane. Whatever method you choose, your visual should
look as shown in Figure 2-53.

FIGURE 2-53 Card visual

With the card visual, you can use only one field. If you want to display several actuals in one
visual, one way to do so would be a Multi-row Card. For instance, if you create a Multi-row card
with Total Actual Amount, Total Profit, Total Target Amount, and Total Target Quantity as fields,
your visual will look like in Figure 2-54.

From the Library of zhanl mamykova

ptg999

 208 CHAPTER 2 Modeling and visualizing data

FIGURE 2-54 Multi-row card

If instead, you want to use the KPI or Gauge visual, you need to calculate the target amount.

Calculate the target
Target figures are often provided in separate tables from actual figures, and they are usually
at different granularity level. For example, businesses rarely set targets at day level; instead,
they might set targets at monthly or yearly level. In our data model, we have target figures set
at Calendar Year and Bill To Customer level. The problem with the measures we have now is
that they will still show values when analyzed at other levels of granularity. For example, if we
display the Total Target Amount measure by Calendar Year Label and Month like in Figure 2-55,
we will see the same values for each month within a given Calendar Year Label.

FIGURE 2-55 Total Target Amount by Calendar Year Label and Month

These figures, while technically correct, are misleading to anyone looking at the report. This
situation can be addressed in a few ways. First, the monthly figures can be divided by 12 so
that they make sense at month level. However, if you browse the Date table at the day level, for
instance, then you will again have to deal with this issue.

From the Library of zhanl mamykova

ptg999

 Skill 2.3: Measure performance by using KPIs, gauges, and cards CHAPTER 2 209

MORE INFO ALLOCATING TARGETS AT DIFFERENT GRANULARITIES

If you want to allocate your target or budget figures at higher granularity levels—for
example, at month or day level when you only have yearly figures—you can use the budget
pattern developed by Alberto Ferrari and Marco Russo. For more details and examples, see
“Budget Patterns” at http://www.daxpatterns.com/budget-patterns/.

Second, these values can be hidden using DAX so that you only see the figures at Calendar
Year level. You also need to take into account the columns from the Customer table that are at
higher level of granularity than the Target figures, as well as all other tables.

By using the ISFILTERED function, you can check whether a column has been filtered explic-
itly. To see the effect of the function, create the following measure and slice it by Calendar Year
Label. The resulting table are shown in Figure 2-56.

CYL Filtered = ISFILTERED ('Date'[Calendar Year Label])

FIGURE 2-56 The CYL Filtered measure sliced by Calendar Year Label

Note how the measure shows False at the total level and True everywhere else. This is be-
cause at the total level, Calendar Year Label is not filtered. If you have a slicer that selects a few
Calendar Year Label values, the total level will also display True. However, if filtered by Month,
for instance, the total would still show False. In this case, you can use the ISCROSSFILTERED
function that checks whether the table in which the column exists has any other filters applied.
You can now create the following measure, add it to the table from Figure 2-56 and slice it by
Month.

CYL CrossFiltered = ISCROSSFILTERED ('Date'[Calendar Year Label])

The results are shown in Figure 2-57.

FIGURE 2-57 CYL CrossFiltered in a matrix visual

From the Library of zhanl mamykova

http://www.daxpatterns.com/budget-patterns/

ptg999

 210 CHAPTER 2 Modeling and visualizing data

Note how when we slice by Month, the CYL Filtered measure still shows False at the total
level, yet the CYL CrossFiltered measure shows True. This is because there is a filter on the Date
table which cross-filters Calendar Year Label, even if we do not see a difference in this case.

MORE INFO ISFILTERED AND ISCROSSFILTERED

For more information on these two functions, refer to “ISFILTERED Function (DAX)” at
https://msdn.microsoft.com/en-us/library/gg492163.aspx, and “ISCROSSFILTERED Function
(DAX)” at https://msdn.microsoft.com/en-us/library/gg492197.aspx.

You can now create a measure that checks if the currently browsed granularity is supported
by the Target table:

Target Is Valid =
NOT (
 -- Check the Date table granularity
 ISFILTERED ('Date'[Calendar Month Label])
 || ISFILTERED ('Date'[Date])
 || ISFILTERED ('Date'[Day])
 || ISFILTERED ('Date'[Fiscal Month Label])
 || ISFILTERED ('Date'[Fiscal Year Label])
 || ISFILTERED ('Date'[Month])
 || ISFILTERED ('Date'[Short Month])
 -- Check the Customer table granularity
 || ISFILTERED (Customer[Customer])
 || ISFILTERED (Customer[Postal Code])
 || ISFILTERED (Customer[Primary Contact])
 -- Check other tables
 || ISCROSSFILTERED (City)
 || ISCROSSFILTERED (Employee)
 || ISCROSSFILTERED ('Stock Item')
)

NOTE COMMENTS IN DAX

You can write both single- and multi-line comments in DAX. For single-line comments, you
need to prefix your code with a double forward slash (//) or a double dash (--), like in the Tar-
get table formula above. For multi-line comments, you need to write them between /* and */.

Note how ISCROSSFILTERED can also accept a table as a parameter, simplifying checking
whether a filter has been applied on any of its columns. At this stage, create the following mea-
sure and put it into the table from Figure 2-55.

Target Amount = IF ([Target Is Valid], [Total Target Amount])

A sample of results can be seen in Figure 2-58.

From the Library of zhanl mamykova

https://msdn.microsoft.com/en-us/library/gg492163.aspx
https://msdn.microsoft.com/en-us/library/gg492197.aspx

ptg999

 Skill 2.3: Measure performance by using KPIs, gauges, and cards CHAPTER 2 211

FIGURE 2-58 The Target Amount measure used in a table

At this stage, to compare the actual and target figures, use the KPI visual, which has three
field wells:

 ■ Indicator (actual or base value)

 ■ Trend axis

 ■ Target goals (one or two)

Only the first two fields are required. If you use Total Actual Amount as the indicator and
Calendar Year Label as Trend axis, you will see a visual like the one shown in Figure 2-59.

FIGURE 2-59 KPI visual with indicator and trend axis

The visual displays the indicator value that corresponds to the last point on the trend axis.
In our case, it shows Total Actual Amount for CY2016. Behind the indicator value, its trend line
with shaded underlying area is displayed.

At this point, add one or two target values to the Target Goals field well. If you add Target
Amount, the KPI visual will look like the one in Figure 2-60.

From the Library of zhanl mamykova

ptg999

 212 CHAPTER 2 Modeling and visualizing data

FIGURE 2-60 KPI visual with target goal

Note how below the indicator, you see the target goal value for the last trend axis point, as
well as the percentage difference between the indicator and target goal.

When you use a target goal field in a KPI visual, you can take advantage of conditional
formatting. The indicator itself and background will be colored, and an icon will be displayed
to the right of the indicator. By default, if the indicator is below the target value, the former will
be colored red along with the background; the icon displayed will be the exclamation sign. If
the indicator is above the target goal, the color will be green, and a tick mark will be displayed
to the right of the indicator.

You can also use two target goals in a KPI visual. In this case, if the indicator is below both
targets, the color will be red; if it is above both targets, the color will be green. If the indica-
tor happens to be between the target goals, the color will be yellow, and a filled point will be
displayed next to the indicator.

If for a certain KPI, the low indicator is good, you can change the conditional formatting
behavior in the Direction drop-down list in the Color Coding section of the Format pane. The
default behavior is called “High is good.” If you select “Low is good” as the direction, the back-
ground will be green if the indicator is below the target goal, and a tick mark will be displayed
instead of the exclamation sign.

The Format pane has a brush icon and is next to the Fields pane; you can see it highlighted
in Figure 2-61.

From the Library of zhanl mamykova

ptg999

 Skill 2.3: Measure performance by using KPIs, gauges, and cards CHAPTER 2 213

FIGURE 2-61 Format pane

In the Format pane, you can also turn on and off the goal value, distance, and trend axis.
Also, you can adjust the default colors.

MORE INFO KPI VISUALS

For more details and a video tutorial on the KPI visuals, see “KPI visuals (Tutorial)” at https://
docs.microsoft.com/en-us/power-bi/power-bi-visualization-kpi.

Calculate actual to target
There are several ways in which you can calculate the actual to target, or variance, figure. To
calculate the absolute amount, you can create a measure that references both the actual and
target measures and subtracts one from another:

Actual to Target = [Total Actual Amount] - [Target Amount]

To calculate the percentage difference, you can either reference the Actual to Target
measure, or you can calculate it in one measure only. The following two expressions provide
equivalent results:

Actual to Target % = DIVIDE ([Actual to Target], [Target Amount])

Actual to Target % = DIVIDE ([Total Actual Amount] - [Target Amount], [Target Amount])

From the Library of zhanl mamykova

https://docs.microsoft.com/en-us/power-bi/power-bi-visualization-kpi
https://docs.microsoft.com/en-us/power-bi/power-bi-visualization-kpi

ptg999

 214 CHAPTER 2 Modeling and visualizing data

The use of DIVIDE is important in this case because it handles division by zero, and the
Target amount may be blank in case a user is browsing the model at the granularity level that
Target Amount does not support. When Target Amount is (Blank), DIVIDE returns (Blank) as
well. If we opted for the division operator instead, you would see “Infinity” in cases when Target
Amount was (Blank).

Configure values for gauges
The Gauge visual has five field wells:

 ■ Value

 ■ Minimum value

 ■ Maximum value

 ■ Target value

 ■ Tooltips

While the Gauge visual will be displayed with any of the field wells filled, it should at least
have a field in the Value field well. When you place Total Actual Amount in the Value field well,
you will see a visual like in Figure 2-62.

FIGURE 2-62 Gauge visual

The main value is displayed in the center. Since there is no trend axis, the value displayed
is the total for all dates in the current filter context. By default, the visual sets the minimum at
0 and the maximum at double the amount of Value in this case, double the value of Total
Actual Amount. As a result, the gauge is exactly half-filled. It is possible to adjust these figures
by putting measures into the Minimum Value and Maximum Value field wells, respectively. For
example, we can create the following measure and put it into the Maximum Value field well:

Gauge Maximum = 300 * 10 ^ 6

From the Library of zhanl mamykova

ptg999

 Skill 2.3: Measure performance by using KPIs, gauges, and cards CHAPTER 2 215

While this measure is hard-coded for example purposes, in real life, this can be a proper
dynamic measure. Also, we can use our Target Amount measure in the Target Value field well.
Once we add both measures to the visual, it will look like in Figure 2-63.

FIGURE 2-63 Gauge with maximum and target values set

The target amount is now shown as a black needle on the gauge.

The final field well that can be used is Tooltips. This field well can accept multiple measures
and is not unique to the Gauge visual; many other visuals have it. When you place a measure
into the Tooltips field well, you will be able to see its value when you hover over a data point in
the visual. If you put Total Profit in the Tooltips field well and hover over the gauge, the visual
will look like the one in Figure 2-64.

FIGURE 2-64 Tooltips

Note that tooltips do not necessarily contain all the measures that are used in a visual. In our
case, the Gauge Maximum measure is absent.

From the Library of zhanl mamykova

ptg999

 216 CHAPTER 2 Modeling and visualizing data

MORE INFO TOOLTIPS

Tooltips can be a powerful addition to many visuals. Besides numeric values, they can also
display datetime and text measures. For more examples and details on the Tooltip feature,
see “Customizing Tooltips in Power BI Desktop” at https://docs.microsoft.com/en-us/power-
bi/desktop-custom-tooltips.

Use the format settings to manually set values
Besides using measures in field wells of a Gauge, you can set the minimum, maximum, and
target values manually in the Format pane. If you set a value in a field well, you will not be able
to override it in the Format pane. For instance, if we keep the Gauge Maximum measure but
remove the Target Amount measure and go to the Gauge Axis section in the Format pane, we
will be able to set both the minimum and target values. The settings can be seen in Figure 2-65.

FIGURE 2-65 Gauge axis format settings

You can use the Format pane to do the following in the Gauge:

 ■ Change the colors of the gauge and the target line

 ■ Hide or format the minimum and maximum values, target, and the main value

MORE INFO GAUGES AND SINGLE-NUMBER CARDS

For more examples and information on using card visuals and gauges, see “Gauges and
single-number cards” at https://docs.microsoft.com/en-us/power-bi/guided-learning/
visualizations#step-9.

For a video tutorial on using the Gauge visual, see “Radial gauge charts in Power BI (Tutorial)”
at https://docs.microsoft.com/en-us/power-bi/power-bi-visualization-radial-gauge-charts.

From the Library of zhanl mamykova

https://docs.microsoft.com/en-us/powerbi/desktop-custom-tooltips
https://docs.microsoft.com/en-us/powerbi/desktop-custom-tooltips
https://docs.microsoft.com/en-us/power-bi/guided-learning/visualizations#step-9
https://docs.microsoft.com/en-us/power-bi/guided-learning/visualizations#step-9
https://docs.microsoft.com/en-us/power-bi/power-bi-visualization-radial-gauge-charts

ptg999

 Skill 2.4: Create hierarchies CHAPTER 2 217

Skill 2.4: Create hierarchies

Hierarchies can make browsing your data model easier for end users. In Power BI Desktop,
there are hierarchies of two kinds: the automatic date hierarchies and user-defined, or custom,
hierarchies. While you can only either enable or disable the automatic date hierarchies, you
have greater flexibility when building your own hierarchies; you can rename both the hierarchy
and each element, and you can reorder the levels of a hierarchy.

This section covers how to:
 ■ Create date hierarchies

 ■ Create hierarchies based on business needs

 ■ Add columns to tables to support desired hierarchy

Create date hierarchies
Date hierarchies are used very often because many reports deal with dates. You can take ad-
vantage of the built-in Power BI date hierarchies, or you can create your own. Using the built-in
date hierarchies means less work, though it carries some limitations while creating your own
hierarchies gives you the greatest flexibility.

By default, Power BI creates a date hierarchy for any date or datetime type of column. When
you put a date or datetime column in a visual that supports hierarchies, you will see that Power
BI adds a date hierarchy instead of a single date column. You can review this behavior by creat-
ing a table visual and adding the Date column from the Date table to it. The table will look like
in Figure 2-66.

FIGURE 2-66 Date hierarchy

From the Library of zhanl mamykova

ptg999

 218 CHAPTER 2 Modeling and visualizing data

At this stage, note that in the Values field well of the table visual you have the Date hierarchy
instead of the Date column, and it has four levels:

 ■ Year

 ■ Quarter

 ■ Month

 ■ Day

You cannot edit the hierarchy because it is automatically created by Power BI, but you can
remove some of the levels that are displayed by clicking on the crosses next to the hierarchy
level names. If, after removing some levels, you want to show all levels again, you can click on
the down arrow next to the hierarchy name, or right-click on it, and select Show All Levels.

To switch between the date hierarchy and the actual column from which it is built, you
can right-click on the hierarchy and select the column name instead of the hierarchy. In our
example, it would be Date instead of Date Hierarchy. This will replace all the hierarchy columns
both in the table visual and the field well with a single column.

The advantage of using automatic date hierarchies is that they are convenient because they
exist by default, and you do not need to create them. Furthermore, even if a datetime column
contains time portions in addition to dates, the hierarchy will contain dates only, which is es-
sential for any Time Intelligence functions.

You can reference all columns in the automatic date hierarchies with special syntax called
variation, or dot notation. For instance, if you want to create a calculated column in the Date
table that concatenates the Year and Quarter columns from the automatic date hierarchy, you
can write the following formula:

Year Quarter = 'Date'[Date].[Quarter] & " " & 'Date'[Date].[Year]

IntelliSense can suggest you these columns in the same way as other columns as soon as
you type ‘Date’[Date]. The dot notation, in this case, works similar to the RELATED function,
though it is currently unique to the automatic date hierarchies.

It is important to note that by default, Power BI creates such a hierarchy for every date or
datetime column, and it starts on 1 January of the minimum year and ends at 31 December of
the maximum year. This hierarchy is a hidden table. Therefore, even if you have a single-row
table with a date column, Power BI will build an automatic date hierarchy with 365 or 366 rows.
While in this particular case this may not be significant, it can cause the data model size to
bloat, especially in cases where dates can go up to 31 December 9999.

If automatic date hierarchies are undesirable, they can be turned off for each file individual-
ly. To do that, select File > Options and settings > Options, then Current File > Data Load
> Time intelligence > Auto Date/Time. Doing so turns off automatic date hierarchies for the
whole data model; keeping some date hierarchies, but not others, is not possible.

From the Library of zhanl mamykova

ptg999

 Skill 2.4: Create hierarchies CHAPTER 2 219

MORE INFO WORKING WITH AUTOMATIC DATE HIERARCHIES

For more examples and details on how you can use the automatic date hierarchies, see
“Visual hierarchies and drill-down” at https://docs.microsoft.com/en-us/power-bi/guided-
learning/visualizations#step-18.

Create hierarchies based on business needs
While the automatic date hierarchies can be convenient, you cannot add new columns to them.
Furthermore, they are of no use if you use a custom calendar such as 4-4-5, which is popular
in retail, for example. For these reasons, you might prefer to use your own calendar table and
enrich it with your own date hierarchies. The principles with which you create a custom date
hierarchy are the same for any custom hierarchy, so in the next example, we are going to build
a custom date hierarchy.

A hierarchy can be created only using existing columns. The columns also need to be in the
same table; if you want to use a column from another table in a hierarchy, you will need to add
it with the RELATED function.

Once you have all desired columns in the same table, you can right-click on a column and
select New Hierarchy. Preferably, this should be the column that will be at the highest level,
because that way you will save time on reordering hierarchy levels later. For example, you can
right-click on the Calendar Year Label column and choose New Hierarchy, which will create a
hierarchy called Calendar Year Label Hierarchy with a hierarchy icon next to it.

Another way to create a hierarchy is to drag and drop one column on top of another. The
column you are dragging should be the second level of the hierarchy.

To add an element to an existing hierarchy, you need to right-click on a column and select
Add to Hierarchy, then select the hierarchy to which you want to add it. Alternatively, you can
drag and drop columns to the hierarchy of your choice. We should add the following columns
to our custom hierarchy:

 ■ Calendar Month Label

 ■ Date

You can rename a hierarchy or any of its elements by either double-clicking on the name
or right-clicking on it and selecting Rename. In our case, we should rename the hierarchy to
“Calendar Y-M-D” and its elements as follows:

Old name New name

Calendar Year Label Year

Calendar Month Label Month

Date Date

From the Library of zhanl mamykova

https://docs.microsoft.com/en-us/power-bi/guided-learning/visualizations#step-18
https://docs.microsoft.com/en-us/power-bi/guided-learning/visualizations#step-18

ptg999

 220 CHAPTER 2 Modeling and visualizing data

Note that when you rename a hierarchy element, the original column name remains as is. At
the same time, you do not need to sort a hierarchy element by another column, because it in-
herits this property from the original column. The original column can be hidden, if necessary.

The resulting hierarchy once added to a table visual, can be seen in Figure 2-67.

FIGURE 2-67 Calendar Y-M-D

Note that hierarchies can be fully replaced by using individual columns together. Creating
hierarchies only saves time when you frequently use the same columns together–they do not
provide any additional benefit.

For instance, you can re-create the table from Figure 2-67 by adding Calendar Year Label,
Calendar Month Label, and Date to the Value field well. You can even rename the columns
within the visual by either right-clicking on their names in the Values field well and selecting
Rename or double-clicking on the names. The result can be seen in Figure 2-68.

FIGURE 2-68 Hierarchy created with columns only

From the Library of zhanl mamykova

ptg999

 Skill 2.4: Create hierarchies CHAPTER 2 221

If you have not disabled automatic date/time hierarchies, you must switch from Date Hierar-
chy to Date to replicate the Calendar Y-M-D hierarchy, otherwise you will have a Date hierarchy
in addition to the Year and Month columns. Note how you can use both columns and hierar-
chies together in the Values field well.

EXAM TIP

Be aware that using a hierarchy and individual columns together are fully equivalent options
for exam purposes.

To reorder elements of a hierarchy, you need to drag and drop elements within the hierar-
chy in the Fields pane. A yellow line will show you where the element you are dragging will end
up. Alternatively, you can click on a hierarchy element and select Move Up or Move Down.

MORE INFO DRILL DOWN USING HIERARCHIES

Hierarchies can be especially useful when you use them to drill down in visuals such as
column charts or matrixes. This topic is outside of the scope of this book, but you can read
more about different ways to drill down in a visual at “Drill down in a visualization in Power
BI” at: https://docs.microsoft.com/en-us/power-bi/power-bi-visualization-drill-down.

For a video tutorial on the topic, see “Visual hierarchies and drill-down” at https://docs.
microsoft.com/en-us/power-bi/guided-learning/visualizations#step-18.

Add columns to tables to support desired hierarchy
As mentioned above, if your hierarchy needs to contain columns from different tables, you need
to bring all columns into a single table first with the RELATED function. Usually this is the table with
the lowest granularity. For instance, if you had three tables connected with one-to-many relation-
ships—Product, Subcategory, and Category—you create your hierarchy in the Product table.

There are cases when you need to create new columns from existing columns to enable
hierarchy creation. A good example of this is parent-child (PC) hierarchies. For example, an
organization might have the following hierarchical structure stored in a database:

TABLE 2-17 Sample organizational structure

Employee Manager

Gustavo

Luka Gustavo

Hazem Gustavo

Kim Luka

Ahmad Luka

Michael Hazem

David Ahmad

Terry Ahmad

From the Library of zhanl mamykova

https://docs.microsoft.com/en-us/power-bi/power-bi-visualization-drill-down
https://docs.microsoft.com/en-us/power-bi/guided-learning/visualizations#step-18
https://docs.microsoft.com/en-us/power-bi/guided-learning/visualizations#step-18

ptg999

 222 CHAPTER 2 Modeling and visualizing data

At its current state, it is not possible to create a meaningful hierarchy in this table because
there are several levels in it but only two columns. DAX has several functions with which you
can flatten parent-child hierarchies.

The first function that we are going to review is PATH, which receives two parameters: the
ID column and the parent column. In our case, you can use the Employee column as the ID
column and the Manager column as the Parent column. If we name a table “PC,” the formula
we should use is as follows:

Path = PATH (PC[Employee], PC[Manager])

IMPORTANT BLANKS AND EMPTY STRINGS

When there is a top-level employee that has no parent, it must have a blank value in place
of its parent. If instead, there is an empty string, you will see an error message like this:
“The value ‘’ in ‘PC’[Manager] must also exist in ‘PC’[Employee]. Please add the missing data
and try again.” For more information on the PATH function, see “PATH Function (DAX)” at
https://msdn.microsoft.com/en-us/library/gg492167.aspx.

The function returns a pipe-delimited list of all parents, starting with the top parent, and
ending with the current ID. Adding all parent-child columns to the PC table provides results like
those shown in Table 2-18.

TABLE 2-18 Path column added

Employee Manager Path

Gustavo Gustavo

Luka Gustavo Gustavo|Luka

Hazem Gustavo Gustavo|Hazem

Kim Luka Gustavo|Luka|Kim

Ahmad Luka Gustavo|Luka|Ahmad

Michael Hazem Gustavo|Hazem|Michael

As you can see, Kim, Ahmad, and Michael all have two managers above them. You can get
the number of levels in a hierarchy using the PATHLENGTH function, which receives the path
column as its only parameter:

Levels = PATHLENGTH (PC[Path])

The PC table with the Levels column added can be seen in Table 2-19.

From the Library of zhanl mamykova

https://msdn.microsoft.com/en-us/library/gg492167.aspx

ptg999

 Skill 2.4: Create hierarchies CHAPTER 2 223

TABLE 2-19 Levels column added

Employee Manager Path Levels

Gustavo Gustavo 1

Luka Gustavo Gustavo|Luka 2

Hazem Gustavo Gustavo|Hazem 2

Kim Luka Gustavo|Luka|Kim 3

Ahmad Luka Gustavo|Luka|Ahmad 3

Michael Hazem Gustavo|Hazem|Michael 3

Note that the maximum value in the Levels column is 3, confirming the previous observa-
tion. At this point, you can add three columns; one for each level of the hierarchy as follows:

Level 1 = PATHITEM (PC[Path], 1)

Level 2 = PATHITEM (PC[Path], 2)

Level 3 = PATHITEM (PC[Path], 3)

Once you add the above columns, the PC table will look like Table 2-20.

TABLE 2-20 Hierarchy levels added as columns

Employee Manager Path Level 1 Level 2 Level 3

Gustavo Gustavo Gustavo

Luka Gustavo Gustavo|Luka Gustavo Luka

Hazem Gustavo Gustavo|Hazem Gustavo Hazem

Kim Luka Gustavo|Luka|Kim Gustavo Luka Kim

Ahmad Luka Gustavo|Luka|Ahmad Gustavo Luka Ahmad

Michael Hazem Gustavo|Hazem|Michael Gustavo Hazem Michael

MORE INFO PARENT-CHILD HIERARCHIES IN DAX

At this point, you can already create a hierarchy using the Level 1, Level 2, and Level 3 col-
umns. If you had a column to aggregate, it would correctly show the amounts, but it would
also show amounts even if a level is blank, like in the case of Level 2 and Level 3 for Gustavo.
If this is undesirable, you can use the technique developed by Marco Russo: see “Parent-
Child Hierarchies” at:https://www.daxpatterns.com/parent-child-hierarchies/.

From the Library of zhanl mamykova

https://www.daxpatterns.com/parent-child-hierarchies/

ptg999

 224 CHAPTER 2 Modeling and visualizing data

There is also the PATHITEMREVERSE function in DAX, which works like the PATHITEM func-
tion, but counts from the end. If you use the following calculated column formulas instead of
the preceding ones, our table looks like Table 2-21.

Level 1 = PATHITEMREVERSE (PC[Path], 1)

Level 2 = PATHITEMREVERSE (PC[Path], 2)

Level 3 = PATHITEMREVERSE (PC[Path], 3)

TABLE 2-21 PC table with PATHITEMREVERSE level columns

Employee Manager Path Level 1 Level 2 Level 3

Gustavo Gustavo Gustavo

Luka Gustavo Gustavo|Luka Luka Gustavo

Hazem Gustavo Gustavo|Hazem Hazem Gustavo

Kim Luka Gustavo|Luka|Kim Kim Luka Gustavo

Ahmad Luka Gustavo|Luka|Ahmad Ahmad Luka Gustavo

Michael Hazem Gustavo|Hazem|Michael Michael Hazem Gustavo

Both PATHITEM and PATHITEMREVERSE can receive an optional third parameter: specifying
0 or omitting the parameter makes the functions return text strings while specifying 1 makes
the functions return integers.

Finally, there is the PATHCONTAINS function that checks whether an item is part of a
particular path. The function receives two parameters: the path and an item to check. The
PATHCONTAINS function can be especially useful when you enable row-level security, which
is covered in Chapter 3, “Configure dashboards, reports, and apps in the Power BI Service.” For
review purposes, use a hardcoded value of “Luka” to check whether it appears in the path:

Employee Manager Path Luka in Path

Gustavo Gustavo False

Luka Gustavo Gustavo|Luka True

Hazem Gustavo Gustavo|Hazem False224

Kim Luka Gustavo|Luka|Kim True

Ahmad Luka Gustavo|Luka|Ahmad True

Michael Hazem Gustavo|Hazem|Michael False

MORE INFO PARENT-CHILD HIERARCHY FUNCTIONS IN DAX

For more examples and information on the parent-child functions in DAX, see “Understand-
ing Functions for Parent-Child Hierarchies in DAX” at https://msdn.microsoft.com/en-us/
library/gg492192.aspx.

From the Library of zhanl mamykova

https://msdn.microsoft.com/en-us/library/gg492192.aspx
https://msdn.microsoft.com/en-us/library/gg492192.aspx

ptg999

 Skill 2.5: Create and format interactive visualizations CHAPTER 2 225

Skill 2.5: Create and format interactive visualizations

Once you have connected to the data sources and created a data model, the next step is to
create visualizations. One of the things that sets Power BI apart from other visualization tools is
that you can create interactive visualizations—that is, visuals, that can interact with each other
by cross-filtering the underlying data.

This section covers how to:
 ■ Select a visualization type

 ■ Configure page layout and formatting

 ■ Configure interactions between visuals

 ■ Configure duplicate pages

 ■ Handle categories that have no data

 ■ Configure default summarization and data category of columns

 ■ Position, align, and sort visuals

 ■ Enable and integrate R visuals

 ■ Format measures

Select a visualization type
So far in this chapter, we have already worked with some visuals, including Gauge, Card, Multi-
row Card, KPI, Slicer, Table, and Matrix. In this section, we are going to review some other
standard Power BI visuals.

NOTE CHOOSING THE RIGHT VISUAL

SQLBI has created a concise reference that can help you with selecting the right visual. It
lists all the standard visuals and many custom ones. For more details, see “Power BI Visuals
Reference” at https://www.sqlbi.com/ref/power-bi-visuals-reference/.

Bar charts
Power BI has six variations of bar charts:

 ■ Stacked bar chart

 ■ Stacked column chart

 ■ Clustered bar chart

 ■ Clustered column chart

 ■ 100% Stacked bar chart

 ■ 100% Stacked column chart

From the Library of zhanl mamykova

https://www.sqlbi.com/ref/power-bi-visuals-reference/

ptg999

 226 CHAPTER 2 Modeling and visualizing data

All six charts share the same five field wells:

 ■ Axis You can use one or more categorical columns in this field well.

 ■ Legend One categorical column can be used.

 ■ Value You can use one or more numerical fields; if you use a legend or color satura-
tion, you can only put one field into this field well.

 ■ Color saturation One numerical field can be used.

 ■ Tooltips You can use one or more fields here

You can see all six variations of bar charts in Figure 2-69 with titles manually set to reflect
the chart type.

FIGURE 2-69 Six bar chart types

It is best to use bar charts when you are comparing values across categories. If you want to
compare values across time, it is best to use line charts, which are covered next.

From the Library of zhanl mamykova

ptg999

 Skill 2.5: Create and format interactive visualizations CHAPTER 2 227

MORE INFO FORMATTING VISUALS

You can customize many items in the Format pane, including the title, legend, background,
axes and change colors in the Format pane. To learn more, see ”Customize visualization
titles, legends, and backgrounds (Tutorial)” at https://docs.microsoft.com/en-us/power-bi/
power-bi-visualization-customize-title-background-and-legend, and “Getting started with
color formatting and axis properties” at https://docs.microsoft.com/en-us/power-bi/service-
getting-started-with-color-formatting-and-axis-properties.

Line and area charts
Power BI has a line chart and two area charts, which are similar to the line chart, but have a
shaded area under the lines:

 ■ Line chart

 ■ Area chart

 ■ Stacked area chart

All three charts have the following field wells:

 ■ Axis For one or more categorical columns.

 ■ Legend For one categorical column.

 ■ Values One or more numerical fields can be used; if you use a legend, you can only
use one field in this well.

 ■ Tooltips One or more fields can be used.

The three charts can be seen in Figure 2-70.

FIGURE 2-70 Line, area, and stacked area charts

From the Library of zhanl mamykova

https://docs.microsoft.com/en-us/power-bi/power-bi-visualization-customize-title-background-and-legend
https://docs.microsoft.com/en-us/power-bi/power-bi-visualization-customize-title-background-and-legend
https://docs.microsoft.com/en-us/power-bi/service-getting-started-with-color-formatting-and-axis-properties
https://docs.microsoft.com/en-us/power-bi/service-getting-started-with-color-formatting-and-axis-properties

ptg999

 228 CHAPTER 2 Modeling and visualizing data

Line charts are best used when you are comparing values across time.

MORE INFO AREA CHART

For a tutorial on a basic area chart, as well as considerations on using it, see “Basic Area chart
(Tutorial)” at https://docs.microsoft.com/en-us/power-bi/power-bi-visualization-basic-area-
chart.

Combo charts
There are two combo charts in Power BI:

 ■ Line and stacked column chart

 ■ Line and clustered column chart

Both charts have five field wells:

 ■ Shared axis One or more categorical columns.

 ■ Column series A legend well in which you can use a categorical column.

 ■ Column values You may use one or more numerical fields in this well; if you have a
column series, you can only use one field.

 ■ Line values One or more numerical fields may be used in this well.

 ■ Tooltips One or more fields may be used in this well.

You can see the two charts used in Figure 2-71.

FIGURE 2-71 Combo charts

Combo charts can be the appropriate choice when you plot two fields that have very differ-
ent value range for instance, dollar amounts and percentages. By default, the column values
appear on the right, and the line values appear on the left. In the Format settings, you can
switch the axes, as well as hide one or the other.

From the Library of zhanl mamykova

https://docs.microsoft.com/en-us/power-bi/power-bi-visualization-basic-area-chart
https://docs.microsoft.com/en-us/power-bi/power-bi-visualization-basic-area-chart

ptg999

 Skill 2.5: Create and format interactive visualizations CHAPTER 2 229

MORE INFO COMBO CHARTS

For more information on combo charts, including areas of application and formatting op-
tions, see “Combo Chart in Power (Tutorial)” at https://docs.microsoft.com/en-us/power-bi/
power-bi-visualization-combo-chart.

Ribbon chart
The Ribbon chart is similar to a column chart, but it has ribbons between the bars to highlight
changes in the relative ranking of categorical items. The item with the highest value will be
displayed on top.

The chart has four field wells:

 ■ Axis One or more categorical columns.

 ■ Legend You may use one categorical column.

 ■ Value You can use one or more numerical fields in this well; if you use a legend, you
can use one field only.

 ■ Tooltips You may use one or more fields.

You can see a ribbon chart used in Figure 2-72.

FIGURE 2-72 Ribbon chart

Note how Figure 2-72 shows that almost every year, the ranking of Buying Group items by
Total Actual Amount is as follows:

1. N/A

2. Tailspin Toys

3. Wingtip Toys

From the Library of zhanl mamykova

https://docs.microsoft.com/en-us/power-bi/power-bi-visualization-combo-chart
https://docs.microsoft.com/en-us/power-bi/power-bi-visualization-combo-chart

ptg999

 230 CHAPTER 2 Modeling and visualizing data

The exception is CY2015, in which Wingtip Toys overtook Tailspin Toys as number two.

MORE INFO RIBBON CHART

For more information on using the Ribbon chart, including formatting options, see “Use
ribbon charts in Power BI” at https://docs.microsoft.com/en-us/power-bi/desktop-ribbon-
charts.

Waterfall chart
The Waterfall chart shows color-coded values in a running total fashion. By default, positive
values are green, while negative values are red. This visual has four field wells:

 ■ Category One or more categorical columns.

 ■ Breakdown You may use one categorical column.

 ■ Y Axis One numerical field.

 ■ Tooltips You may use one or more fields.

You can see two waterfall charts: one with and one without a breakdown for three calendar
years in Figure 2-73.

FIGURE 2-73 Waterfall charts

Note how when you use breakdown, only the top five items are shown by default, with the
rest being grouped into Other. The Other group is yellow because it may contain both Increase
and Decrease items. You can change the colors, as well as number of breakdowns in the For-
matting pane.

From the Library of zhanl mamykova

https://docs.microsoft.com/en-us/power-bi/desktop-ribbon-charts
https://docs.microsoft.com/en-us/power-bi/desktop-ribbon-charts

ptg999

 Skill 2.5: Create and format interactive visualizations CHAPTER 2 231

IMPORTANT TOTAL IN WATERFALL CHART

Be aware that the total in waterfall chart is an arithmetic sum of the items, not the value that
you would see without filtering the category, as is the case in the Table visual, for example.
This behavior is especially relevant with semi-additive or non-additive measures, such as
balances or averages.

A waterfall chart is a good choice when you want to show the major changes or illustrate
what the total amount is made of while showing the total at the same time for comparison.

MORE INFO WATERFALL CHART

For more information on how you can use the Waterfall visual, including a tutorial, see “Wa-
terfall charts in Power BI (Tutorial)” at https://docs.microsoft.com/en-us/power-bi/power-bi-
visualization-waterfall-charts.

Scatter chart
The Scatter chart can visualize two or more metrics for categorical items. Each item will be plot-
ted according to the X and Y coordinates, which will be taken from the metrics. When you use a
third metric for size, the chart can be called a bubble chart. The visual has eight field wells:

 ■ Details You can use one or more categorical items in this field well; if you use more
than one column, you can drill down.

 ■ Legend You may use one categorical column.

 ■ X Axis One numerical field.

 ■ Y Axis One numerical field.

 ■ Size One numerical field.

 ■ Color saturation One numerical field may be used; when you use legend, you cannot
use color saturation.

 ■ Play Axis One categorical column ideally, but not necessary, the time column.

 ■ Tooltips You may use one or more fields.

An example of a scatter chart is shown in Figure 2-74.

From the Library of zhanl mamykova

https://docs.microsoft.com/en-us/power-bi/power-bi-visualization-waterfall-charts
https://docs.microsoft.com/en-us/power-bi/power-bi-visualization-waterfall-charts

ptg999

 232 CHAPTER 2 Modeling and visualizing data

FIGURE 2-74 Scatter chart

Note how easy it is to see one item that is an outlier: its price is almost five times the second-
most expensive price. If you hover over the bubble, you see that it is Air cushion machine (Blue).
Scatter charts can be a powerful way to show a relationship between two metrics or highlight
outliers.

MORE INFO SCATTER CHART

For a video tutorial and more details on how scatter charts can be used, including format-
ting options, see “Scatter charts and bubble charts in Power BI (Tutorial)” at https://docs.
microsoft.com/en-us/power-bi/power-bi-visualization-scatter.

Pie and doghnut charts
The Pie and Doghnut charts are the same except the latter has empty space in the middle. Both
charts have four field wells:

 ■ Legend For one or more categorical columns.

 ■ Details You may use a categorical column.

 ■ Values You may use one or more numerical fields here; if you use Details, you are
limited to one field only.

 ■ Tooltips You may use one or more fields here.

You can see both charts shown in Figure 2-75:

From the Library of zhanl mamykova

https://docs.microsoft.com/en-us/power-bi/power-bi-visualization-scatter
https://docs.microsoft.com/en-us/power-bi/power-bi-visualization-scatter

ptg999

 Skill 2.5: Create and format interactive visualizations CHAPTER 2 233

FIGURE 2-75 Pie and Donut charts

You can use these charts to show the relationships of parts to the whole. Both charts are not
considered best practice in data visualization with one exception: you may use a pie or a dogh-
nut chart when there are only two categories. Otherwise, if you are sure that users will not be
comparing parts to each other, only to the whole, you may use these charts. But be aware that
having too many items will make reading and interpreting values difficult.

MORE INFO DOGHNUT CHART

For more details on the Doghnut chart, including considerations, see “Doughnut charts in
Power BI (Tutorial)” at https://docs.microsoft.com/en-us/power-bi/power-bi-visualization-
doughnut-charts.

Treemap
Treemap charts can be thought of as rectangular pie charts because they also show the rela-
tionship of the parts to the whole. You can nest rectangles to further divide the whole. There
are five field wells:

 ■ Group For one or more categorical columns.

 ■ Details You may use a categorical column.

 ■ Values You may use one or more numerical fields here; if you use Details, you are
limited to one field only.

 ■ Color saturation You may use a numerical field here unless you are using Details.

 ■ Tooltips You may use one or more fields here.

For example, create a Treemap visual with Sales Territory as the group, State Province for the
details, and Total Actual Amount as the values. The resulting chart is shown in Figure 2-76.

From the Library of zhanl mamykova

https://docs.microsoft.com/en-us/power-bi/power-bi-visualization-doughnut-charts
https://docs.microsoft.com/en-us/power-bi/power-bi-visualization-doughnut-charts

ptg999

 234 CHAPTER 2 Modeling and visualizing data

FIGURE 2-76 Treemap

In this case, the size of each rectangle corresponds to Total Actual amount. The rectangles
are arranged top to bottom and left to right based on numerical values in descending order.

A treemap visual can be a good choice when you want to show proportions between each
part and the whole, as well as highlight the most-important contributors and outliers.

MORE INFO TREEMAP

For a video tutorial and more information on the Treemap visual, including areas of applica-
tion, see “Treemaps in Power BI (Tutorial)” at https://docs.microsoft.com/en-us/power-bi/
power-bi-visualization-treemaps.

Maps in Power BI
Power BI has several options when it comes to visualizing geospatial data. In this section, we
are going to review two map visuals: Map and Filled Map. You can use the following field wells:

 ■ Location One or more categorical columns can be used.

 ■ Legend You may use one categorical field here.

 ■ Latitude You may use one field here.

 ■ Longitude You may use one field here.

 ■ Size For a numerical field (Map only).

From the Library of zhanl mamykova

https://docs.microsoft.com/en-us/power-bi/power-bi-visualization-treemaps
https://docs.microsoft.com/en-us/power-bi/power-bi-visualization-treemaps

ptg999

 Skill 2.5: Create and format interactive visualizations CHAPTER 2 235

 ■ Color saturation You may use a numerical field here unless you use a Legend.

 ■ Tooltips You may use one or more fields here.

When you use a Map visual, you plot bubbles on a map, with the size of each bubble cor-
responding to the value in the Size field well. If you are using a Legend, your bubbles will be
turned into pie charts. If your Legend field well is empty, you can also use a numerical field for
color saturation.

If you use geographical hierarchies in the Location field well, you will be able to drill down
into specific areas on your map.

NOTE IMPROVING ACCURACY OF MAPS

Sometimes points on a map might be plotted inaccurately. To improve the accuracy of
maps, you should categorize your data. Data categories are covered later in this chapter.

Figure 2-77 shows an example of a Map chart with State Province used as the location, Buy-
ing Group used as the legend, and Total Actual Amount used as the size.

FIGURE 2-77 Map example

The map in Figure 2-77 was filtered to show only the contiguous U.S. states. One way to
reproduce the result is to add the CONUS column to the Visual Level Filters field well, which is
in the Filters pane underneath the visual field wells, and select 1.

From the Library of zhanl mamykova

ptg999

 236 CHAPTER 2 Modeling and visualizing data

MORE INFO USING MAPS

For a video overview and more information on how you can use the Map visual, including
tips and tricks, see “Tips and Tricks for Power BI Map visualizations” at https://docs.micro-
soft.com/en-us/power-bi/power-bi-map-tips-and-tricks.

When you use the Filled Map visual, also known as a choropleth map, you are not able to
use the Size field well. Instead, you can use Color Saturation to highlight the difference be-
tween areas.

IMPORTANT LEGEND IN FILLED MAP

If you decide to use a legend, you need to be aware that color saturation will stop working.
Furthermore, you need to make sure that each location has exactly one corresponding value
in legend—otherwise all items will appear with the same color, and the color saturation value
in tooltips will reflect only the first legend item, which may confuse users. Either way, if you
use a legend, placing a value in the Color Saturation field well and using it as a tooltip is the
same.

An example of the Filled Map is shown in Figure 2-78.

FIGURE 2-78 Filled Map

From the Library of zhanl mamykova

https://docs.micro-soft.com/en-us/power-bi/power-bi-map-tips-and-tricks
https://docs.micro-soft.com/en-us/power-bi/power-bi-map-tips-and-tricks

ptg999

 Skill 2.5: Create and format interactive visualizations CHAPTER 2 237

The map in Figure 2-78 uses Total Actual Amount for the color saturation and State Province
as the location. This map only shows the contiguous U.S. states.

MORE INFO FILLED MAPS

For more details on how you can use the Filled Map visual, see “Filled maps (choropleths) in
Power BI (Tutorial)” at https://docs.microsoft.com/en-us/power-bi/power-bi-visualization-
filled-maps-choropleths.

MORE INFO OTHER MAPS

There are many other options for visualizing geographical data in Power BI, including the
ArcGIS Maps for Power BI and Shape Maps.

The ArcGIS Maps allow you to customize your maps beyond the standard map capabilities.
For a tutorial on how you can create ArcGIS maps in Power BI, see “ArcGIS maps in Power BI
service and Power BI Desktop by Esri” at https://docs.microsoft.com/en-us/power-bi/power-
bi-visualization-arcgis.

For information on how you can interact with an ArcGIS map that has already been devel-
oped, see “Interacting with ArcGIS maps in Power BI” at https://docs.microsoft.com/en-us/
power-bi/power-bi-visualizations-arcgis.

With Shape maps, you can use custom maps, which need not be geographical; for example,
you can use a floor plan as a map. For more information on using Shape maps, see “Shape
Maps in Power BI Desktop (Preview)” at https://docs.microsoft.com/en-us/power-bi/desktop-
shape-map.

Custom visuals, which are covered later in this chapter, also allow you to visualize spatial
data in many ways. For a comprehensive overview, see “10 Ways to Create Maps in Microsoft
Power BI” at https://dataveld.wordpress.com/2017/06/03/10-ways-to-create-maps-in-micro-
soft-power-bi/.

Funnel
The final visual we are going to review is the Funnel chart, which looks similar to a bar chart
with bars center-aligned. The visual has four field wells:

 ■ Group You can use one or more categorical columns here.

 ■ Values You can only use a numerical field here.

 ■ Color saturation A numerical field may be used.

 ■ Tooltips One or more fields can be used here.

An example of a funnel chart i shown in Figure 2-79.

From the Library of zhanl mamykova

https://docs.microsoft.com/en-us/power-bi/power-bi-visualization-filled-maps-choropleths
https://docs.microsoft.com/en-us/power-bi/power-bi-visualization-filled-maps-choropleths
https://docs.microsoft.com/en-us/power-bi/power-bi-visualization-arcgis
https://docs.microsoft.com/en-us/power-bi/power-bi-visualization-arcgis
https://docs.microsoft.com/en-us/power-bi/power-bi-visualizations-arcgis
https://docs.microsoft.com/en-us/power-bi/power-bi-visualizations-arcgis
https://docs.microsoft.com/en-us/power-bi/desktop-shape-map
https://docs.microsoft.com/en-us/power-bi/desktop-shape-map
https://dataveld.wordpress.com/2017/06/03/10-ways-to-create-maps-in-micro-soft-power-bi/
https://dataveld.wordpress.com/2017/06/03/10-ways-to-create-maps-in-micro-soft-power-bi/

ptg999

 238 CHAPTER 2 Modeling and visualizing data

FIGURE 2-79 Funnel chart

Note that the Funnel displays the last item relative to the first item.

A funnel chart can be a proper choice for showing values by stages, for instance, by lead
generation stages. The visual can also be used for revealing bottlenecks in a process or to track
workflow.

MORE INFO FUNNEL CHART

For a video tutorial and more information on how you can create a funnel chart, includ-
ing areas of application, see “Funnel charts (Tutorial)” at https://docs.microsoft.com/en-us/
power-bi/power-bi-visualization-funnel-charts.

Configure page layout and formatting
By default, the size of each page in Power BI Desktop is 1280 by 720 pixels. You can modify this
size by selecting the Format pane after making sure that no visual is selected. You will then see
three sections:

 ■ Page Information

 ■ Page Size

 ■ Page Background

In Page Information, you can give the page a new name and aliases, as well as choose
whether Q&A is enabled for this page. You can also rename a page by either double-clicking
on its tab or right-clicking on the tab and selecting Rename Page.

MORE INFO Q&A

Q&A is the natural language processing ability of Power BI, which can visually answer ques-
tions about your data. The Q&A feature is covered in Chapter 3.

From the Library of zhanl mamykova

https://docs.microsoft.com/en-us/power-bi/power-bi-visualization-funnel-charts
https://docs.microsoft.com/en-us/power-bi/power-bi-visualization-funnel-charts

ptg999

 Skill 2.5: Create and format interactive visualizations CHAPTER 2 239

In Page Size, you can select one of the preset page sizes, or specify a custom size in pixels.
The preset sizes are as follows:

 ■ 16:9 (1280 by 720 pixels)

 ■ 4:3 (960 by 720 pixels)

 ■ Cortana (296 by 592 pixels)

 ■ Letter (816 by 1056 pixels)

In Page Background, you can choose the background color and specify transparency. Also,
you can choose a background image and three options to scale it:

 ■ Normal Displays the image in its original size.

 ■ Fit Stretches the image to canvas size without keeping proportions.

 ■ Fill Stretches the image to touch the canvas from inside, keeping proportions.

Besides page formatting, you can also adjust page view in View > View > Page View. You
have three options:

 ■ Fit to Page

 ■ Fit to Width

 ■ Actual Size

All three options keep the proportions of a page.

Configure interactions between visuals
One of the defining features of Power BI is the interaction of visuals with each other. For ex-
ample, you can click on an item in a bar chart, and it will cross-highlight a column chart. This
behavior is illustrated in Figure 2-80.

FIGURE 2-80 Cross-highlighting in action

From the Library of zhanl mamykova

ptg999

 240 CHAPTER 2 Modeling and visualizing data

In Figure 2-80, we clicked on the bar that displays Total Actual Amount for the Black color.
The other bars in this graph then became dimmed, and portions of columns in the other graph
became highlighted. These highlighted portions represent Total Actual Amount values in each
calendar year that relate to the Black color. This behavior is called cross-highlighting: clicking
on a visual highlights portions of other visuals.

To change this behavior, you can click on the bar chart, after which the Format tab in the top
becomes visible. You can choose Format > Interactions > Edit interactions. You should then
see new buttons appear in the top-right corner of the column chart, shown in Figure 2-81.

FIGURE 2-81 Interaction buttons

In this case, you see three buttons, left to right:

 ■ Filter

 ■ Highlight

 ■ None

By default, the Highlight button is selected in Figure 2-81. In tooltips for the column chart,
you will see both the total value and the highlighted one for each column.

If you select the Filter button instead, your visuals will look like in Figure 2-82.

From the Library of zhanl mamykova

ptg999

 Skill 2.5: Create and format interactive visualizations CHAPTER 2 241

FIGURE 2-82 Cross-filtering behavior in action

Note how this time the columns are solid color; instead of highlighting, they are filtered to
show different values.

MORE INFO FILTERING AND HIGHLIGHTING

For more information on the difference between filtering and highlighting, see “About
filters and highlighting in Power BI reports” at https://docs.microsoft.com/en-us/power-bi/
power-bi-reports-filters-and-highlighting.

The final option is the None button. If you select it, the column chart will ignore any selec-
tions made in the bar chart. You can employ the same technique to make a visual ignore other
visuals, such as a slicer. You need to select how a visual affects others for each visual.

Not every chart has all three interaction options; some only have two, such as Filter and
None. For example, it is not possible to highlight part of a slicer or a card. In these cases, the
default behavior will be Filter instead of Highlight.

MORE INFO VISUALS INTERACTION

For a video overview and more details on how visuals can interact with each other, see “Vi-
sualization interactions in a Power BI report” at https://docs.microsoft.com/en-us/power-bi/
service-reports-visual-interactions.

From the Library of zhanl mamykova

https://docs.microsoft.com/en-us/power-bi/power-bi-reports-filters-and-highlighting
https://docs.microsoft.com/en-us/power-bi/power-bi-reports-filters-and-highlighting
https://docs.microsoft.com/en-us/power-bi/service-reports-visual-interactions
https://docs.microsoft.com/en-us/power-bi/service-reports-visual-interactions

ptg999

 242 CHAPTER 2 Modeling and visualizing data

Configure duplicate pages
In some cases, you might want to show two similar pages with slight changes. For example, you
might want to display several visuals that relate to revenue, and you would like another page
to show costs with the same visuals. One way to accomplish this task is to duplicate a page and
then switch the values. Doing so saves time by not having to rebuild and reformat all of the
visuals.

You can duplicate a page by right-clicking on its tab in the bottom and selecting Duplicate
Page. This will create a new page with the “Duplicate of” prefix. Alternatively, when you are on
the page you want to copy, you can select Home > Insert > New Page > Duplicate Page.

Handle categories that have no data
By default, Power BI hides all categorical items that have blank corresponding measures,
whether implicit or explicit. You can change this behavior by clicking on the down arrow of a
categorical field in its field well and selecting Show items with no data. Now, you will see items
even if they have no data. You can see the difference this makes in Figure 2-83.

FIGURE 2-83 Showing items with no data

An alternative way to solve the same problem is to add a zero to a measure formula. For
instance, you could create the following measure:

Always Show Amount = [Total Actual Amount] + 0

Adding a zero to measure formula shows 0 instead of a blank value when there is no data.

Configure default summarization and data category of
columns
You can further enrich your data model by assigning certain properties to columns, which
include default summarization and data category.

From the Library of zhanl mamykova

ptg999

 Skill 2.5: Create and format interactive visualizations CHAPTER 2 243

Default summarization
When you put a field into the Values field well, its values might need to be summarized. For
example, you can put the Profit column from the Sale table into a card visual, and the latter will
display the total profit in the current filter context. When Power BI sees a numerical column,
it will assign a default summarization; you can see the default summarization if you select the
field in the Fields pane and select Modeling > Properties > Default Summarization. In
the case of Profit, Sum was selected by Power BI Desktop automatically. If necessary, you can
change it to any of the following:

 ■ Don’t summarize

 ■ Sum

 ■ Average

 ■ Minimum

 ■ Maximum

 ■ Count

 ■ Count (Distinct)

Not all default summarization options are available for every column. Columns of text and
datetime type only have the following options:

 ■ Don’t summarize

 ■ Count

 ■ Count (Distinct)

Columns of True/False data type can only be counted or not summarized.

The Don’t Summarize option makes Power BI treat a column like a categorical one. For
example, if you select Don’t Summarize for the Tax Rate column from the Sale table visual and
create a table with it, Power BI will show the distinct values of the column instead of its total
sum. This behavior can be especially desirable for numeric columns that are not meant to be
operated on, such as year number.

You can also override the default summarization by changing the summarization type in
each field well. To do that, you need to right-click on a field in a field well or click on its down
arrow in a field well and select the summarization type. For numeric columns, you can select
the following summarization types:

 ■ Don’t summarize

 ■ Sum

 ■ Average

 ■ Minimum

 ■ Maximum

 ■ Count (Distinct)

 ■ Count

From the Library of zhanl mamykova

ptg999

 244 CHAPTER 2 Modeling and visualizing data

 ■ Standard deviation

 ■ Variance

 ■ Median

For datetime type columns, you can choose from the following:

 ■ Don’t summarize

 ■ Earliest

 ■ Latest

 ■ Count (Distinct)

 ■ Count

Columns of type text can be summarized in the following ways:

 ■ Don’t summarize

 ■ First

 ■ Last

 ■ Count (Distinct)

 ■ Count

The summarization types for the True/False type columns are the same as the defaults for
that type.

Data categories
Besides default summarization, you can assign data categories to columns, which is also done
in Modeling > Properties. Categorizing your data can help Power BI with treating it properly
in visuals. The following data categories are currently available:

 ■ Address

 ■ City

 ■ Continent

 ■ Country/Region

 ■ County

 ■ Latitude

 ■ Longitude

 ■ Place

 ■ Postal Code

 ■ State or Province

 ■ Web URL

 ■ Image URL

 ■ Barcode

From the Library of zhanl mamykova

ptg999

 Skill 2.5: Create and format interactive visualizations CHAPTER 2 245

All but the last three data categories are related to geography; they might be helpful when
your data is ambiguous. For instance, a two-letter code can stand for either a country code
or a U.S. state code, which means categorization will improve mapping accuracy. Once you
categorize a column as a geographical column, it will have a globe icon next to it.

The Web URL data category can be used to display clickable hyperlinks in a table or in a
matrix visual.

MORE INFO WEB URLS

For more information on how you can display hyperlinks in some visuals, including dis-
playing a hyperlink icon instead of text in tables, see “Hyperlinks in tables” at https://docs.
microsoft.com/en-us/power-bi/power-bi-hyperlinks-in-tables.

With the Image URL data category, you can display images in some visuals, including Multi-
Row Card, Slicer, Table, and Matrix.

The Barcode data type allows you to scan an item with the iPhone app and filter your report
for this item.

MORE INFO TAGGING BARCODES

For more information on working with barcodes in Power BI, see “Tag barcodes in Power
BI Desktop for the mobile apps” at https://docs.microsoft.com/en-us/power-bi/desktop-
mobile-barcodes.

MORE INFO DATA CATEGORIES

To read more about how you can categorize data in Power BI Desktop, see “Data categori-
zation in Power BI Desktop” at https://docs.microsoft.com/en-us/power-bi/desktop-data-
categorization.

Position, align, and sort visuals
You can alter the way your visuals are presented by moving and sorting them.

Positioning visuals
There are three ways in which you can position your visuals:

 ■ First, you can drag a visual around with your mouse.

 ■ Second, you can go to the Format tab and specify new X and Y coordinates in the Gen-
eral section.

 ■ Third, you can select a visual and then use the arrow keys on your keyboard to position
the visual.

From the Library of zhanl mamykova

https://docs.microsoft.com/en-us/power-bi/power-bi-hyperlinks-in-tables
https://docs.microsoft.com/en-us/power-bi/power-bi-hyperlinks-in-tables
https://docs.microsoft.com/en-us/power-bi/desktop-mobile-barcodes
https://docs.microsoft.com/en-us/power-bi/desktop-mobile-barcodes
https://docs.microsoft.com/en-us/power-bi/desktop-data-categorization
https://docs.microsoft.com/en-us/power-bi/desktop-data-categorization

ptg999

 246 CHAPTER 2 Modeling and visualizing data

If you want to disable the ability of visuals to be moved, you can select View > Show >
Lock Objects. You can also focus on a single visual by clicking the Focus Mode icon in its top-
right corner, next to the ellipsis.

Aligning visuals
To make it easier to align the visuals, you can click View > Show > Snap Objects to Grid. This
will increase the grain in which you can move your visuals. To see gridlines, you can choose
View > Show > Show Gridlines.

Power BI also has several options for alignment of visuals by selecting Visual tools Format
> Arrange > Align:

 ■ Align left

 ■ Align center

 ■ Align right

 ■ Align top

 ■ Align middle

 ■ Align bottom

Also, you can distribute visuals horizontally or vertically by selecting Visual tools Format
> Arrange > Distribute. For this function to work properly, you need to select at least three
visuals.

Sorting visuals
You can sort many Power BI visuals either alphabetically by the names of categorical items, or
in ascending or descending order by values.

For instance, if you have a bar chart that shows Total Actual Amount by Color, you can sort
the colors in descending order by Total Actual Amount. To do that, you would need to click
on the ellipsis in the top-right corner and select Sort by Total Actual Amount. You can see the
menu in Figure 2-84.

FIGURE 2-84 Sorting visuals

From the Library of zhanl mamykova

ptg999

 Skill 2.5: Create and format interactive visualizations CHAPTER 2 247

If you need to sort in ascending order instead of descending one, you can click on the ZA
icon next to Sort by Total Actual Amount.

MORE INFO SORTING VISUALS

For more information on how you can sort visuals, including sorting using other criteria,
see “Change how a chart is sorted in a Power BI report” at https://docs.microsoft.com/en-us/
power-bi/power-bi-report-change-sort.

Note that from the same menu, you can export data from the visual in a CSV file by clicking
Export Data, or you can look at the data behind the visual by clicking Show Data. You can also
delete the visual by clicking Remove.

Enable and integrate R visuals
In Power BI Desktop, it is possible to visualize data with R, though you need to have the R en-
gine installed on your computer first.

NOTE DOWNLOADING R

You can download the R engine from several websites, including CRAN at: https://cran.r-
project.org/bin/windows/base/, and MRAN at https://mran.revolutionanalytics.com/down-
load.

Once you have R installed, you can go to File > Options and settings > Options, then
Global > R scripting. You need to make sure the correct R home directory is specified, and
you must select the preferred R IDE (Integrated Development Environment). You can then cre-
ate visuals powered by R.

When you click on the R visual icon for the first time, you will see the Enable script visuals
dialog box, shown in Figure 2-85.

FIGURE 2-85 Enable script visuals dialog box

Clicking Enable creates a placeholder R visual and opens the R script editor, which you can
see in Figure 2-86.

From the Library of zhanl mamykova

https://docs.microsoft.com/en-us/power-bi/power-bi-report-change-sort
https://docs.microsoft.com/en-us/power-bi/power-bi-report-change-sort
https://cran.r-project.org/bin/windows/base/
https://cran.r-project.org/bin/windows/base/
https://mran.revolutionanalytics.com/download
https://mran.revolutionanalytics.com/download

ptg999

 248 CHAPTER 2 Modeling and visualizing data

FIGURE 2-86 R script editor

For example, use the Color column from the Stock Item table and the Total Actual Amount
measure with the following R script to produce a bar graph that shows Total Actual Amount, in
millions, by colors. The result is shown in Figure 2-87.

LISTING 2-16 R script

Colors <- dataset$Color
Amounts <- dataset$'Total Actual Amount' / 1000000
par (mar = c (2, 6, 2, 2) + 0.1)
barplot (Amounts, horiz = TRUE, names.arg = Colors, las = 1)

FIGURE 2-87 R visual

From the Library of zhanl mamykova

ptg999

 Skill 2.5: Create and format interactive visualizations CHAPTER 2 249

MORE INFO USING R IN POWER BI DESKTOP

R can be a powerful addition to the standard visuals in Power BI. For more information on
using R to create visuals in Power BI Desktop, including limitations, see “Create Power BI
visuals using R” at https://docs.microsoft.com/en-us/power-bi/desktop-r-visuals.

You can use any R library that is installed locally on your machine when you work in Power BI
Desktop. If you decide to publish or share your report, which is covered in Chapter 3 under
“Publish and embed reports,” you should be aware of the limitations—namely, the available
libraries. For more information, see “Creating R visuals in the Power BI service” at https://
docs.microsoft.com/en-us/power-bi/service-r-visuals.

In addition to creating visuals, R can also be used as a data source in Get Data. For more
details, see “Run R scripts in Power BI Desktop” at https://docs.microsoft.com/en-us/power-
bi/desktop-r-scripts.

Format measures
In Power BI Desktop, you can format both columns and measures, and the process is identical.
You can select formatting in Modeling > Formatting > Format. Depending on the data type
that a measure returns, you might see some of the following options available when choosing
formatting:

 ■ General

 ■ Currency

 ■ Date Time

 ■ Decimal Number

 ■ Whole Number

 ■ Percentage

 ■ Scientific

 ■ Text

 ■ Binary

 ■ True/False

Both Currency and Date Time have additional options available. Additionally, you can dis-
play or hide the thousands separator and set the number of decimal places.

For example, you can format the Total Actual Amount measure as Currency General by
selecting the measure in the Fields pane, then selecting Modeling > Formatting > Format
> Currency > Currency general. To set a fixed number of decimal places, specify a number
instead of Auto, such as 0. This can be done by either clicking on the arrows or typing. As a
result, the measure will display values with a dollar sign prefixed, with thousands separator and
no decimal places.

From the Library of zhanl mamykova

https://docs.microsoft.com/en-us/power-bi/desktop-r-visuals
https://docs.microsoft.com/en-us/power-bi/service-r-visuals
https://docs.microsoft.com/en-us/power-bi/service-r-visuals
https://docs.microsoft.com/en-us/power-bi/desktop-r-scripts
https://docs.microsoft.com/en-us/power-bi/desktop-r-scripts

ptg999

 250 CHAPTER 2 Modeling and visualizing data

Use bookmarks and themes for reports
By using bookmarks in Power BI, you can create compelling data stories. Bookmarks allow you
to save filters and the state of visuals; bookmarks can be arranged in order, and you can step
through them in a presentation to highlight insights. You can spend less time on formatting by
using report themes, which override the default formatting of visuals.

Bookmarks
Though one of the defining features of Power BI is its interactivity, in some cases you may
prefer to draw users’ attention to specific aspects of your reports. For example, you might want
to highlight a certain visual with applied filters that show an interesting insight. Bookmarks
in Power BI allow you to do exactly that: they let you save the states of your pages and switch
between them in presentation mode or by linking to them.

Bookmarks can save states of pages, which corresponds to the following:

 ■ Filters, including cross-filtering and selections in slicers

 ■ Current page

 ■ Objects visibility

 ■ Sort order

 ■ Drill down level

To create a bookmark, you need to open the Bookmarks pane first: click View > Show >
Bookmarks Pane. Once you apply filters or otherwise achieve the desired state of the page
you are on, click Add in the Bookmarks pane. The bookmark will then appear in the Bookmarks
pane with a default name of Bookmark 1. You can rename a bookmark by double-clicking on
its name or by clicking on the ellipsis next to it and selecting Rename. The ellipsis menu also
contains the following items:

 ■ Update If you decide to change the state of a bookmark, you can update an existing
bookmark instead of creating a new one.

 ■ Delete This option deletes the bookmark.

 ■ Data This option determines whether the filter context of the page is saved in the
bookmark. By default, this option is checked. Unchecking it can be useful when you only
want to save the visibility of visuals, which is covered below in more detail.

 ■ Display This option, which is checked by default, determines whether the bookmark
saves the visibility of visuals. This setting can be useful when you only want to change
filters with your bookmark without changing the visibility of visuals.

 ■ Current page By default, this option is checked; it determines whether clicking the
bookmark takes you to the page where it was created. Unchecking the option can be
useful when you want to change a report-level filter without going to a different page.

 ■ All visuals This option determines whether the bookmark is applied to all visuals or
selected visuals only. By default, a bookmark is applied to all visuals.

From the Library of zhanl mamykova

ptg999

 Skill 2.5: Create and format interactive visualizations CHAPTER 2 251

 ■ Selected visuals You can create a bookmark and only apply it to the visuals, which
were selected at the time you created the bookmark. It is important to note that you
cannot create a bookmark without selecting visuals, then select some visuals, click Se-
lected visuals and then Update – this change will have no effect.

When creating bookmarks, you can not only apply filters but also change the visibility of
visuals; the latter is done in the Selection pane. To open the pane, click View > Show > Selec-
tion Pane. In the pane, you will see a list of your visuals, which will all be visible by default.
Note that the names of the visuals correspond to their titles, even if they are hidden. If a visual
has no title, the visual will have the same name as the chart type. As a result, you may see mul-
tiple visuals with the same name. In this case, you can give your visuals meaningful names by
adding user-friendly titles and then hiding them. To do this, select a visual either by clicking on
it in the report canvas or by selecting it in the Selection pane, then click Format > Title > Off
(this will turn it to On), enter Title Text and click On to hide the title.

The Selection pane allows you to hide visuals by clicking on the eye icon next to a visual.
Note that hiding a visual does not delete it; instead, the visual becomes invisible, but it is still
part of the page. One of the implications of this is that hidden slicers can still filter other visu-
als.

In a bookmark, you can highlight a single visual by clicking on the ellipsis in its top-right
corner and selecting Spotlight. Once you do this, the visual will be highlighted with a shade
around it, and the rest of the report canvas will be tinted. You can see this effect in Figure 2-88.
At this stage, we can create a bookmark by clicking Add in the Bookmarks pane. If you created
a bookmark before, the new bookmark would be called Bookmark 2.

FIGURE 2-88 Spotlight

From the Library of zhanl mamykova

ptg999

 252 CHAPTER 2 Modeling and visualizing data

To undo the Spotlight effect, you can click anywhere else on the report canvas or select
another visual in the Selection pane.

To review the effect of hiding visuals, you can hide some visuals by clicking the eye icon next
to the visuals in the Selection pane. Once you do this, create another bookmark. The eye icons
of the hidden visuals will be replaced with dashes. Figure 2-89 shows all but two visuals hidden.

FIGURE 2-89 Hidden visuals

Note that in the Selection pane, you can hide or show all visuals at once by clicking the Hide
All or Show All button, respectively. You can change the z-order, also known as z-index, of visu-
als by clicking the up or down arrows at the top of the pane. The z-order of a visual determines
which visual gets selected when you click on an area where two visuals overlap. To switch
between different visuals, you can press the Tab button on your keyboard after highlighting a
visual.

MORE INFO ACCESSIBILITY AND KEYBOARD SHORTCUTS

You can move to the previously selected visual by pressing Shift + Tab. To find out about the
other accessibility features in Power BI, including keyboard shortcuts, see “Accessibility in
Power BI Desktop reports” at https://docs.microsoft.com/en-us/power-bi/desktop-accessibility.

When you have created some bookmarks, you can change their order by dragging and
dropping them in the Bookmarks pane. You can navigate between bookmarks by clicking
them in the Bookmarks pane, or you can click the View button, which will replace the pages
bar at the bottom with the bookmark title bar. When you are in the View mode, also known as
presentation mode, you can close the Bookmarks and Selection panes to have more room for
your report; the panes can be closed by clicking the cross in the top-right corner in each. The
Visualizations and Filters panes can be collapsed by clicking on their names, and the Ribbons

From the Library of zhanl mamykova

https://docs.microsoft.com/en-us/power-bi/desktop-accessibility

ptg999

 Skill 2.5: Create and format interactive visualizations CHAPTER 2 253

pane can be collapsed by double-clicking on any tab or by clicking on the arrow in the top-
right corner of the pane. Figure 2-90 shows the bookmark title bar in the View mode.

FIGURE 2-90 Hidden visuals

You can exit from the View mode by clicking Exit in the Bookmarks pane, or by clicking the
cross in the bookmark title bar.

To navigate to a specific bookmark, you can also link a shape or an image to a bookmark.
To create a shape, click Home > Insert > Shapes and select the shape you want to create. You
can choose one of the following:

 ■ Rectangle

 ■ Oval

 ■ Line

 ■ Triangle

 ■ Arrow

You can also link an image to a bookmark. To insert an image, click Home > Insert > Image
and select an image from your computer. Once you have a shape or an image you want to turn
into a link, select the visual. Note that the Visualizations pane will be replaced by the Format
Shape pane. Click Off in the Link section of the Format Shape pane; once Off turns into On,
click the drop-down list and select Bookmark. This will open the Bookmark drop-down list,
where you can choose a Bookmark you want to link to. For example, you can pick Bookmark 2.
At this stage, if you hold the Ctrl key on your keyboard and click the shape or image, you will be
taken to Bookmark 2. You can create more links to other bookmarks for more interactive navi-

From the Library of zhanl mamykova

ptg999

 254 CHAPTER 2 Modeling and visualizing data

gation using the same technique. Note that when you are in Reading view in Power BI service,
you do not need to hold the Ctrl key when you click on linked shapes or images.

MORE INFO USING BOOKMARKS

For more information on how you can use bookmarks in Power BI, see “Use bookmarks to
share insights and build stories in Power BI” at https://docs.microsoft.com/en-us/power-bi/
desktop-bookmarks.

Report themes
As discussed earlier in this chapter, Power BI allows you to apply custom formatting to your vi-
suals. For example, you can change line colors in a line chart or change font size of slicer items.
If you set the same formatting options for different charts repeatedly, you can benefit from us-
ing report themes, which allow you to set your own default format settings for each formatting
option. In addition to this, report themes can contain a custom color palette.

NOTE ENABLING REPORT THEMES

Depending on the version of Power BI Desktop you are using, you may need to enable
custom report themes first. For this, click File > Options and settings > Options > Global >
Preview features > Custom report themes > OK.

Report themes are created as JSON files and then imported in Power BI Desktop. Listing
2-17 shows an example of a report theme that sets new default colors and a new default text
size and color for all visuals. The code is available in the companion files folder as Report-
Theme.json.

LISTING 2-17 Report theme JSON

{
 "name": "ER778",
 "dataColors": ["#717171", "#F1595E", "#79C369", "#589AD3", "#F9A659", "#D77FB2",
"#CE7058", "#9E67AB"],
 "visualStyles": {
 "*": {
 "*": {
 "*": [{
 "fontSize": 10,
 "color": {
 "solid": {
 "color": "#000000"
 }
 }
 }]
 }
 }
 }
}

From the Library of zhanl mamykova

https://docs.microsoft.com/en-us/power-bi/desktop-bookmarks
https://docs.microsoft.com/en-us/power-bi/desktop-bookmarks

ptg999

 Skill 2.6: Manage custom reporting solutions CHAPTER 2 255

NOTE CREATING REPORT THEMES

While you can create a report theme file manually by typing the code and saving it as JSON,
there are tools that facilitate the creation of report themes. For example, see “Theme Gen-
erator” at https://powerbi.tips/tools/.

To import a theme into your report, click Home > Themes > Switch Theme > Import
Theme. After selecting your Power BI report theme file, click Open. If the code of the theme
is correct, you will then see a message saying the theme was imported successfully; otherwise,
you will get an error message. To remove a theme from a report, click Home > Themes >
Switch Theme > Default Theme.

It is important to note that themes do not override any formatting that you have already
set in the Format pane. For instance, if your line chart has one line and you specified your own
color for it, the theme will not change the color. If you kept the default color of the line, the
report theme will change the color to a new color; more precisely, the line color will be set to
the first color you specified in the dataColors array in your report theme JSON file.

As you will see in Chapter 3 under “Configure a dashboard,” the formatting from report
themes can also be applied to dashboard tiles.

MORE INFO USING REPORT THEMES

For a general overview of report themes and details on which formatting options you can
specify, see “Use Report Themes in Power BI Desktop” at https://docs.microsoft.com/en-us/
power-bi/desktop-report-themes.

Skill 2.6: Manage custom reporting solutions

While Power BI already has powerful functionality out of the box, it can be further extended
with custom reporting solutions. You can embed Power BI reports in custom applications and
apply your own formatting to them, including branding. Furthermore, you can push data into
Power BI datasets programmatically by using the Power BI REST API and create custom visuals
to widen the available visualization options.

This section covers how to:
 ■ Configure and access Microsoft Power BI Embedded

 ■ Enable developers to create and edit reports through custom applications

 ■ Enable developers to embed reports in applications

 ■ Use the Power BI API to push data into a Power BI dataset

 ■ Enable developers to create custom visuals

From the Library of zhanl mamykova

https://powerbi.tips/tools/
https://docs.microsoft.com/en-us/power-bi/desktop-report-themes
https://docs.microsoft.com/en-us/power-bi/desktop-report-themes

ptg999

 256 CHAPTER 2 Modeling and visualizing data

Configure and access Microsoft Power BI Embedded
To use Power BI Embedded, you need to have a dedicated capacity, which you can configure in
Azure portal. The following is required for creating dedicated capacity:

 ■ Azure subscription

 ■ Azure Active Directory tenant

 ■ Power BI account in the same Azure AD tenant

To create Power BI Embedded capacity in Azure portal, you need to complete the following
steps:

1. Sign in to Azure portal at portal.azure.com.

2. Select New and search for Power BI Embedded.

3. Select Power BI Embedded and click Create.

4. Specify the following:

 ■ Resource name, which is the name of your Power BI capacity, and it will be used to
identify your capacity in both the Azure portal and the Power BI admin portal.

 ■ Subscription in which to create the capacity.

 ■ Resource group of your capacity.

 ■ Power BI capacity administrator.

 ■ Location Is the Azure region in which the capacity will be hosted.

 ■ Pricing tier.

5. Click Create.

The capacity usually takes only a few seconds to create. Once it is created, you can assign
the capacity to a workspace by selecting Settings > Admin portal > Capacity settings >
Power BI Embedded, then click on the capacity name and choose how you want to allocate
the capacity. Alternatively, you can go to settings of a workspace and enable Dedicated Capac-
ity in Advanced Settings, then choose the capacity.

MORE INFO MANAGING CAPACITIES

For more details on how you can manage and assign capacities in Power BI, see “Manage ca-
pacities within Power BI Premium and Power BI Embedded” at: https://docs.microsoft.com/
en-us/power-bi/service-admin-premium-manage.

If you don’t need to use the capacity, pause it to stop incurring charges for it; go to the
capacity’s Azure portal settings to pause it.

MORE INFO CREATING POWER BI EMBEDDED CAPACITY

For a detailed walkthrough on how to create dedicated Power BI Embedded capacity, see
“Create Power BI Embedded capacity in the Azure portal” at: https://docs.microsoft.com/
en-us/azure/power-bi-embedded/create-capacity.

From the Library of zhanl mamykova

http://portal.azure.com
https://docs.microsoft.com/en-us/power-bi/service-admin-premium-manage
https://docs.microsoft.com/en-us/power-bi/service-admin-premium-manage
https://docs.microsoft.com/en-us/azure/power-bi-embedded/create-capacity
https://docs.microsoft.com/en-us/azure/power-bi-embedded/create-capacity

ptg999

 Skill 2.6: Manage custom reporting solutions CHAPTER 2 257

Enable developers to create and edit reports through
custom applications
When you embed your reports in custom applications, developers can specify custom layouts.
Custom layouts allow you to set your own report page sizes or visuals size and position, as well
as its visibility. By default, embedded reports inherit the layout from Power BI Desktop, which
you can override dynamically to better fit your application.

To create custom layouts in a report, you need to have a published report that is ready to be
embedded, which is covered next.

MORE INFO CUSTOM LAYOUTS

For more details on how you can specify custom layouts in embedded reports, see “Custom
layouts” at https://docs.microsoft.com/en-us/power-bi/developer/embedded-custom-layout.

Enable developers to embed reports in applications
With Power BI Embedded, you can embed Power BI dashboards, reports, tiles, and visuals in
custom applications. There are two main scenarios, and Power BI uses a single set of APIs for
both:

 ■ You can embed for users outside of your organization who do not have Power BI
licenses.

 ■ You can embed for users with Power BI licenses within your organization.

In the first scenario, end users interact with your app like any other app; the end user does
not need to know it is Power BI. End users log in with the credentials you provide to them. In
the second scenario, users need to have Power BI licenses allocated to them. A use case for this
scenario is embedding in SharePoint Online or Microsoft Teams. This section covers embed-
ding for users outside of your organization. The other scenario is covered in Chapter 3.

MORE INFO EMBEDDING WITH POWER BI

For an overview of the ways in which you can embed your content with Power BI Embedded,
see “Embedding with Power BI” at https://docs.microsoft.com/en-us/power-bi/developer/
embedding.

To set up your Power BI Embedded environment, you need to make sure you have an Azure
Active Directory (AD) tenant, a Power BI Pro account, and an Azure AD app with the necessary
permissions.

MORE INFO GETTING STARTED WITH POWER BI EMBEDDED

For more details on what is required for embedding Power BI content, see “Get started with
Microsoft Power BI Embedded” at https://docs.microsoft.com/en-us/azure/power-bi-embed-
ded/get-started.

From the Library of zhanl mamykova

https://docs.microsoft.com/en-us/power-bi/developer/embedded-custom-layout
https://docs.microsoft.com/en-us/power-bi/developer/embedding
https://docs.microsoft.com/en-us/power-bi/developer/embedding
https://docs.microsoft.com/en-us/azure/power-bi-embed-ded/get-started
https://docs.microsoft.com/en-us/azure/power-bi-embed-ded/get-started

ptg999

 258 CHAPTER 2 Modeling and visualizing data

Azure Active Directory tenant
To embed items from Power BI into your application, you need to have an Azure Active Direc-
tory tenant with at least one Power BI Pro user. You can either use your existing Azure AD ten-
ant, create a new one just for embedding, or create a tenant for each of your customers.

NOTE CREATING AZURE AD TENANTS

This section assumes you already have an Azure AD tenant you can use. If you need to create
an Azure Active Directory tenant, see “Create an Azure Active Directory tenant to use with
Power BI” at https://docs.microsoft.com/en-us/power-bi/developer/create-an-azure-active-
directory-tenant.

Power BI Pro user
Your Azure AD tenant needs to have a user that has a Power BI Pro license allocated to it. This
account will be used by your application to generate embed tokens for integration of Power BI
content into your application.

While you only need one such account, it is recommended to segregate permissions for
security purposes. For instance, you may choose to create separate accounts for analysts re-
sponsible for creating Power BI content, and you may want to separate the application account
from Azure AD tenant admin user. Both the analyst accounts and the app master user will
need Power BI Pro licenses allocated to it; the organization/tenant admin user does not need a
Power BI Pro license.

Azure AD app
Once you ensure you have an Azure AD tenant with a Power BI Pro user, you can register your
app in Azure for embedding. There are two ways to register an app:

 ■ Power BI App Registration Tool

 ■ Azure portal

The first option requires only a few fields to fill, so it is quicker. If you need to make changes
to your app, you will need to use Azure portal. To register your app with Power BI App Regis-
tration tool, you need to complete the following steps:

1. Visit dev.powerbi.com/apps.

2. Select “Sign in with your existing account.”

3. Specify App Name.

4. Choose App Type:

 ■ Server-side Web app is for Web APIs or web apps

 ■ Native app is for an app that runs on a client device or when you embed content for
your customers

From the Library of zhanl mamykova

https://docs.microsoft.com/en-us/power-bi/developer/create-an-azure-active-directory-tenant
https://docs.microsoft.com/en-us/power-bi/developer/create-an-azure-active-directory-tenant
http://dev.powerbi.com/apps

ptg999

 Skill 2.6: Manage custom reporting solutions CHAPTER 2 259

5. Specify the Redirect URL and, if you are creating a server-side web app, the Home Page
URL.

6. Choose the APIs for your app.

7. Select Register App. You will then be given a Client ID and, in case your app is a server-
side web app, a Client Secret. You can retrieve a Client ID in Azure portal; if you lose the
Client Secret, you will need to create a new one through Azure portal.

MORE INFO REGISTERING AN APP AND PERMISSIONS

For a detailed overview of the available Power BI permissions for apps, see “Power BI per-
missions” at https://docs.microsoft.com/en-us/power-bi/developer/power-bi-permissions.

This section only covers app registrations with the Power BI App Registration tool. For more
information on the process, including registration through Azure portal, see “Register an
Azure AD app to embed Power BI content” at https://docs.microsoft.com/en-us/power-bi/
developer/register-app.

App workspace
When you embed content for your clients, you need to publish your content into an app
workspace. The app master user needs to be an admin of the app workspace. Creating an app
workspace is going to be covered in Skill 3.5: “Configure apps and apps workspaces.”

MORE INFO EMBEDDING POWER BI ITEMS

The exact steps on how to embed Power BI items in your apps are outside of scope of this
book. For a detailed overview of how to embed Power BI content, see “Embed your Power
BI dashboards, reports and tiles” at https://docs.microsoft.com/en-us/power-bi/developer/
embedding-content.

For a tutorial on Power BI Embedded, see “Embed a Power BI dashboard, tile, or report into
your application” at https://docs.microsoft.com/en-us/power-bi/developer/embed-sample-
for-customers.

Use the Power BI API to push data into a Power BI dataset
You can push data into a Power BI dataset using Power BI REST API. For that, you need to have
a native app registered with the following redirect URL:

https://login.live.com/oauth20_desktop.srf

The only API access you need to grant to the app is Read and Write All Datasets. Once you
click Register App, you will be given a Client ID, which you should save for later.

From the Library of zhanl mamykova

https://docs.microsoft.com/en-us/power-bi/developer/power-bi-permissions
https://docs.microsoft.com/en-us/power-bi/developer/register-app
https://docs.microsoft.com/en-us/power-bi/developer/register-app
https://docs.microsoft.com/en-us/power-bi/developer/embedding-content
https://docs.microsoft.com/en-us/power-bi/developer/embedding-content
https://docs.microsoft.com/en-us/power-bi/developer/embed-sample-for-customers
https://docs.microsoft.com/en-us/power-bi/developer/embed-sample-for-customers

ptg999

 260 CHAPTER 2 Modeling and visualizing data

MORE INFO REGISTERING AN APP FOR PUSHING DATA

For a detailed walkthrough on how to register an app for pushing data, see “Step 1: Regis-
ter an app with Azure AD” at https://docs.microsoft.com/en-us/power-bi/developer/walk-
through-push-data-register-app-with-azure-ad.

In the following example, you are going to create a dataset using Power BI REST API and
push data into it using the same API. If you want to follow the example, you need to have Visual
Studio 2017 installed and complete these steps:

1. In Visual Studio, select File > New > Project > Console App (.NET Framework).

2. Give your project a name and click OK.

3. Install the Azure AD Authentication Library for .NET NuGet package. For that, click
Tools > NuGet Package Manager > Package Manager Console and type the follow-
ing, and then press Enter:

Install-Package Microsoft.IdentityModel.Clients.ActiveDirectory -Version
2.21.301221612

4. Using the same procedure as in the previous step, install the Newtonsoft.Json NuGet
package by typing the following in Package Manager Console, and then press Enter:

Install-Package Newtonsoft.Json

5. Replace all Program.cs code with the code from PushData.cs from the companion files
of this book.

6. Make sure to replace {Client_ID} on line 32 with your actual Client ID that you acquired
after registering your app.

7. Click Start or press F5 to run your app.

8. Sign in to your Power BI account.

9. At this stage, you will see your application window open, which will display the authenti-
cation access token.

10. After you press Enter, the window will display “Dataset Created.”

11. Pressing Enter for the second time will show the dataset ID.

12. When you press Enter for the third time, you will see “Rows Added.” You can see the ap-
plication window in Figure 2-91.

From the Library of zhanl mamykova

https://docs.microsoft.com/en-us/power-bi/developer/walk-through-push-data-register-app-with-azure-ad
https://docs.microsoft.com/en-us/power-bi/developer/walk-through-push-data-register-app-with-azure-ad

ptg999

 Skill 2.6: Manage custom reporting solutions CHAPTER 2 261

FIGURE 2-91 Application window

13. Pressing Enter for the fourth time will close the window.

You can now see the dataset in your workspace when you sign in to your account at app.
powerbi.com, and you can even create a report from it.

MORE INFO PUSHING DATA INTO A DATASET

For a detailed overview of pushing data into Power BI datasets, including the description of
Power BI dataset JSON object and table data types, see “Push data into a Power BI dataset”
at https://docs.microsoft.com/en-us/power-bi/developer/walkthrough-push-data.

Enable developers to create custom visuals
While Power BI already comes with many visuals that you can use right away, you can extend
the number of available visuals by using custom visuals. You can download custom visuals cre-
ated by others from custom visuals store, or you can develop your own visuals.

From the Library of zhanl mamykova

http://app.powerbi.com
http://app.powerbi.com
https://docs.microsoft.com/en-us/power-bi/developer/walkthrough-push-data

ptg999

 262 CHAPTER 2 Modeling and visualizing data

In Power BI Desktop, you can import a custom visual by selecting Home > Custom visuals
> From Marketplace, or From File. Alternatively, you can click on the ellipsis that is displayed
after the last visual icon in the Visualizations pane and select Import from File, or Import from
Store. The first option, From Store, requires you to sign in to your account, after which you can
browse the Power BI Custom Visuals store. If you already have a custom visual file, which has
a .pbiviz extension, obtained from somewhere else, you can use the other option, From File.
Once you import a custom visual using either option, it will appear in the Visualizations pane,
and you will be able to use the new visual just like any other visual in your report. If you want
to delete a custom visual, you can right-click on its icon in the Visualizations pane and select
Delete Custom Visual. You can also delete multiple custom visuals from the ellipsis menu in the
Visualizations pane.

To develop custom visuals, you need to have NodeJS installed with Power BI tools and a
server certificate. To enable live preview of your custom visual, you will need to sign in to your
Power BI account at app.powerbi.com and choose Settings (gear icon) > Settings > General
> Developer > Enable developer visual for testing. This will add the developer visual to the
list of available visuals in the Visualizations pane. The developer can then bind metrics to the
new visual, testing the results live.

MORE INFO DEVELOPING CUSTOM VISUALS

For a detailed overview of what is required to develop custom visuals and how you can
distribute them, see “Use developer tools to create custom visuals” at https://docs.microsoft.
com/en-us/power-bi/service-custom-visuals-getting-started-with-developer-tools.

Thought experiment

In this thought experiment, demonstrate your skills and knowledge of the topics covered in this
chapter. You can find the answers to this thought experiment in the next section.

You are the BI developer at Wide World Importers responsible for creating Power BI reports.
You have already connected to data sources and imported data in Power BI Desktop. The
loaded data can be found in CH02-ThoughtExperiment.pbix in the companion files folder for
this book. The data model looks like Figure 2-92.

From the Library of zhanl mamykova

http://app.powerbi.com
https://docs.microsoft.com/en-us/power-bi/service-custom-visuals-getting-started-with-developer-tools
https://docs.microsoft.com/en-us/power-bi/service-custom-visuals-getting-started-with-developer-tools

ptg999

 Thought experiment CHAPTER 2 263

FIGURE 2-92 Wide World Importers data model diagram

The management requested a report based on historical data available. Based on back-
ground information and business requirements, answer the following questions:

1. You created a bar graph with Color on the axis and Quantity on the values. The visual is
shown in Figure 2-93.

FIGURE 2-93 Bar graph showing Quantity by Color

From the Library of zhanl mamykova

ptg999

 264 CHAPTER 2 Modeling and visualizing data

Upon further checking, you find out that black stock items sold 1.1 million units. How can
you fix the graph? The solution should use minimal effort and consider that you may
want to analyze sales by metrics other than Quantity.

A. Create the following measure:

Total Quantity =
CALCULATE (
 SUM (Sale[Quantity]),
 TREATAS (VALUES (‘Stock Item’[Stock Item Key]), Sale[Stock Item Key])
)

B. Create an active physical relationship between Sale and Stock Item.

C. Create the following measure:

Total Quantity =
CALCULATE (
 SUM (Sale[Quantity]),
 INTERSECT(Sale, ‘Stock Item’)
)

D. Create a filtered calculated table for each color based on the Sale table.

2. You create a line chart that shows Quantity by Month. You notice that month values are sort-
ed alphabetically. How can you remedy this? Your solution should involve minimal effort.

A. Use the ellipsis menu in the visual to change the sort order.

B. Create a new column that has a month number in front of month name .

C. Use the Sort by Column feature and sort Month by Calendar Month Number.

D. Create a measure for each month and place them in the right order.

3. You want to create a line chart showing Quantity by the invoice date. You notice that
there is a relationship between the Date from the Date table and the Invoice Date Key
from the Sale table, but the relationship is inactive. All other visuals in your report will be
analyzing values by delivery date. How should you approach this problem?

A. Create the following measure:

Quantity by Invoice Date =
CALCULATE (
 SUM (Sale[Quantity]),
 USERELATIONSHIP (‘Date’[Date], Sale[Invoice Date Key])
)

B. Delete the relationship based on the delivery date and activate the relationship
based on the invoice date.

C. Activate the relationship based on invoice date, keeping the other relationship as is.

D. Use the TREATAS function.

From the Library of zhanl mamykova

ptg999

 Thought experiment CHAPTER 2 265

4. You need to create a column chart that displays Quantity by Color and can be drilled
down to show Quantity by Stock Item. Which of the following solves the problem? More
than one answer can be correct.

A. Put Color and Stock Item on axis.

B. Put Color on axis and Stock Item on legend.

C. Create a Stock Item hierarchy that includes Color and Stock Item and use the hierar-
chy on axis.

D. Put Color on Axis and Stock Item on Tooltips.

5. Is the following statement true? “The account you use for registering an app for embed-
ding Power BI content does not need a Power BI Pro license allocated to it.”

A. Yes

B. No

6. You want to write a measure that calculates the ratio of a month of sales in a year. Which
one of the following functions will you need to use?

A. FILTER

B. ENDOFYEAR

C. WHOLEYEAR

D. ALL

7. You add the Calendar Year column to a table visual and see only one row, as shown in
Figure 2-94.

FIGURE 2-94 Calendar Year used in a table visual

From the Library of zhanl mamykova

ptg999

 266 CHAPTER 2 Modeling and visualizing data

Which of the following options solve the problem? More than one answer can be cor-
rect.

A. Right-click on Calendar Year in the Values field well and select Don’t Summarize.

B. Set the data type of the column to Text.

C. Set the default summarization to Don’t Summarize.

D. Add the Calendar Year field to the Rows field well of a matrix visual.

Thought experiment answers

1. The answer is B. Creating a physical relationship is the least arduous solution and will let
you avoid creating virtual relationships like in answer A. While the measure from answer
A will solve the problem of incorrect values, you will need to write a similar measure
for each different metric you want to analyze. The measure formula from answer C will
not work because Sale and Stock item have a different number of columns. Answer D
involves too much effort and only solves the problem at hand; if you want to analyze
quantity by individual stock items, this approach will fail.

2. The answer is C. When you sort Month by Calendar Month Number, the month names
will appear in the right order in any visual where you use the Month column. The ellipsis
menu discussed in answer A only allows you to change the sort order from ascending
to descending or sort by Quantity instead of Month. The approach described in answer
B may put month names in the right order, but it requires more effort and will add un-
necessary clutter. Creating a measure for each month, like in answer D, will not solve the
problem, because using multiple measures is like using a legend—you will see multiple
dots instead of a sequence of values.

3. The answer is A. Because this is going to be a one-off visual, creating a measure that
activates the relationship at query time solves the problem and involves the least effort.
If you delete the relationship based on delivery date, as option B suggests, other visuals
that use the Date table will display the wrong values. Following option C is not possible
because no more than one relationship can be active at a time. Using TREATAS as per
option D will result in the wrong figures.

4. The correct answers are A and C. With either option, you will be able to drill down in the
hierarchy. Answer B is wrong because you cannot use the legend to drill down. If you
follow the option D, you will not see stock item names in the visual.

5. The answer is B. You need to have a Power BI Pro user to register an app and embed
Power BI content with Power BI Embedded.

6. The answer is D. With the ALL function, you can remove filter on month, allowing you to
calculate the desired ratio. Neither FILTER nor ENDOFYEAR are required for the formula,
so options A and B are incorrect. Option C is wrong because there is no such function as
WHOLEYEAR in DAX.

7. Any of the answers will solve the problem.

From the Library of zhanl mamykova

ptg999

 Chapter summary CHAPTER 2 267

Chapter summary
 ■ In most Power BI data models, you need to create relationships between tables to

produce the correct figures. In Power BI, it is only possible to create a relationship based
on one column from each of the two tables you are relating. If you need to create a rela-
tionship between two tables based on more than one column per table, you can create
a composite column in each table.

 ■ You can create more than one relationship between two tables with no more than one
active at a time. Inactive relationships can be activated programmatically with DAX.
You can create one-to-many and one-to-one relationships in Power BI. A column that
is on the one side of a relationship must contain unique values only without any blanks.
To create a many-to-many relationship, you need to use a bridging table between two
tables.

 ■ Relationships can be either single-directional or bidirectional. If a relationship is bidirec-
tional, then filters from one table reach the other table and vice versa. A single-direction
relationship only passes filters in one direction.

 ■ You can change the sort order of values in a column by using the Sort by Column
feature. You can also apply a different sort order in some visuals by sorting by values
instead of categorical items. This is done in the ellipsis menu of a visual. You can specify
either ascending or descending order.

 ■ Columns that exist only for technical purposes, such as keys and IDs, can be hidden from
reporting view to make browsing the data model easier for report creators.

 ■ Columns and measures can be formatted to make them appear different visually, such
as having a percentage sign or a different number of decimal places.

 ■ In addition to importing data from a data source, you can enter data manually using the
Enter Data feature. Furthermore, you can create custom M queries in Power Query Edi-
tor or create custom DAX tables to achieve a similar effect.

 ■ In addition to M, Power BI uses a language called DAX, which stands for Data Analysis
Expressions. DAX can be used to enrich your data model with more columns, tables, and
measures.

 ■ A calculated column differs from a custom column created in Power Query Editor: the
former is created from data that has already been added to the data model. A formula
that you write for a calculated column is automatically applied for each row, and it must
result in a scalar value. Once a calculated column is created, it is stored in memory and
on disk.

 ■ Many functions in DAX return tables, which can be materialized as calculated tables.
You can often, but not always, nest table functions. Calculated tables, like calculated
columns, also use RAM and disk space.

From the Library of zhanl mamykova

ptg999

 268 CHAPTER 2 Modeling and visualizing data

 ■ Formulas that result in scalar values can be used to create measures in DAX. Unlike cal-
culated columns and calculated tables, measures do not consume disk space and RAM;
instead, they are calculated at the time the query is run, and they use the CPU.

 ■ You must create a calculated column if you want to filter by its values in a slicer or else-
where. Another reason to create a calculated column is to pre-compute and store the
results of a very complex formula that would result in poor performance if it were used
in a measure.

 ■ There are two evaluation contexts in DAX, which always co-exist: row context and filter
context. The row context can be thought of like the current row; in it, you can refer to
values from other columns in the same row without aggregating them. The filter context
filters the data model based on applied filters. The sources of filter context include, but
are not limited to: slicers; visual-, page-, and report-level filters; axes; matrix rows and
columns. In filter context, there is no concept of “current row.” To calculate a scalar value
in filter context, you must use aggregation functions. Either context can be empty at a
time.

 ■ CALCULATE and its sister function, CALCULATETABLE, are the only functions in DAX that
can change filter context. Another important role of the functions is context transition:
they convert a row context into an equivalent filter context.

 ■ You can use variables almost anywhere in DAX, which includes formulas for calculated
columns, calculated tables, and measures. Variables are calculated only once in the
context that they are defined in, and then they become immutable, meaning that even
CALCULATE cannot change them. Variables can be useful to avoid code repetition and
improve performance.

 ■ With What If parameters, you can see how changing a parameterized metric affects
some of your calculations.

 ■ To compare the actual against the target, you can use a KPI or a gauge visual. Further-
more, you can visualize multiple metrics with a multi-row card visual. For a single metric,
you can use the card visual.

 ■ By default, Power BI Desktop creates a date hierarchy for each date or datetime type
column. If this is undesirable, this feature can be turned off. You can create your own
hierarchies based on business needs to make browsing the data model easier. Using
a hierarchy is equivalent to using the columns that it is made of together. There are
parent-child functions in DAX that enable you to flatten the parent-child hierarchies.

 ■ Power BI Desktop currently contains about 30 built-in visuals, and you can extend your
visualization options by using custom visuals. You can import custom visuals created by
others, or you can develop your own.

 ■ Page layout and formatting can be configured for each page individually. You can either
use a predefined size or specify a custom one. In addition to this, you can duplicate
pages.

From the Library of zhanl mamykova

ptg999

 Chapter summary CHAPTER 2 269

 ■ When you click on an item in a visual, it can cross-filter or cross-highlight other visu-
als. Alternatively, visuals can be set to ignore other visuals when interacting with them.
Cross-filtering refers to filtering the data behind the visual; cross-highlighting means
keeping all data and highlighting the filtered segments. Not all visuals can be cross-
highlighted.

 ■ By default, Power BI hides categorical items whose corresponding values are blank. If
needed, you can display categories that have no data either using the visual settings, or
you can do it programmatically with DAX.

 ■ To enable the correct processing of data by Power BI, especially for use with a map vi-
sual, you can categorize it. You can also change the default summarization of a column.

 ■ Visuals can be moved around with mouse or arrow keys, as well as by specifying co-
ordinated in the Format pane. Visuals can also be aligned or distributed evenly on the
canvas using the Visual Tools Format tab.

 ■ You can use R visuals inside Power BI Desktop, for which you need to install R server
on your machine. R visuals can also be used in reports published online, subject to the
necessary libraries being available in Power BI service.

 ■ Bookmarks allow you to draw the attention of users to specific aspects of your reports
by saving page states. You can navigate between bookmarks using the View mode or by
linking bookmarks to shapes or images.

 ■ With report themes, you can apply your own color scheme to your reports, as well as
specify your own default formatting values for each visualization type.

 ■ To use Power BI Embedded, you need to configure dedicated capacity, which is done in
Azure portal. For this, you need an Azure subscription and Azure Active Directory (AD)
with at least one Power BI account in it.

 ■ Developers can create custom report layouts that override the layouts inherited from
Power BI Desktop.

 ■ To create Power BI Embedded solutions, you need to have a Power BI Pro license and
an Azure Active Directory app registered with the necessary permissions. You can use a
single Azure Active Directory tenant or a different one for each customer. The reports
you are embedding need to be published in an app workspace that uses a dedicated
capacity.

 ■ With Power BI REST API, you can create datasets and add rows to them programmati-
cally. A registered Azure AD app is required to perform this task.

From the Library of zhanl mamykova

ptg999

From the Library of zhanl mamykova

ptg999

 271

C H A P T E R 3

Configure dashboards,
reports, and apps in the
Power BI Service
In previous chapters, we primarily reviewed the skills necessary to work in Power BI Desktop.

In this chapter, we are going to review the skills you need to work with another product in
the Power BI family—Power BI service. You can publish your reports to Power BI service and
keep them up to date by enabling scheduled refresh of your datasets. In Power BI service,
you can also create dashboards that may include visuals from multiple datasets, which you
can then share with others either directly or by packaging them in apps. Furthermore, you
can configure security in Power BI service to make sure that users can only access the data
that they are supposed to access.

Skills in this chapter:
 ■ Skill 3.1: Access on-premises data

 ■ Skill 3.2: Configure a dashboard

 ■ Skill 3.3: Publish and embed reports

 ■ Skill 3.4: Configure security for dashboards, reports, and apps

 ■ Skill 3.5: Configure apps and apps workspaces

Skill 3.1: Access on-premises data

When you create your reports based on on-premises data and publish them online, to
refresh your datasets, you will need a way to access your on-premises data sources. This can
be achieved with a data gateway, which is covered in this section. We are also going to review
how you can use Power BI Desktop to publish to and edit reports from Power BI service.

This section covers how to:
 ■ Connect to a data source by using a data gateway

 ■ Publish reports to the Power BI service from Power BI Desktop

 ■ Edit Power BI service reports by using Power BI Desktop

From the Library of zhanl mamykova

ptg999

 272 CHAPTER 3 Configure dashboards, reports, and apps in the Power BI Service

Connect to a data source by using a data gateway
In most cases, to share the reports you created in Power BI Desktop, you need to publish them
to Power BI service in the cloud, also known as PowerBI.com. Once this happens the mechanics
of refreshing your dataset change, which means the cloud, not your machine, needs to have
access to your data sources.

A gateway is a piece of software that acts as a bridge between the cloud and your on-
premises data sources. With a data gateway, you can not only access your on-premises data
sources but also schedule refresh for the datasets published to Power BI service.

Installing a data gateway
To install a gateway, you need to sign into PowerBI.com and click on the Download button in
the top-left corner of the screen, then click Data Gateway. You can see the button in Figure
3-1.

FIGURE 3-1 Data Gateway download button

The Power BI Gateway can be installed in two modes:

 ■ On-premises data gateway This gateway can be used by multiple users that have ac-
cess to the server onto which you install the gateway. It can be used for both scheduling
refresh and live queries in Power BI. You can also use it for PowerApps, Logic Apps, and
Microsoft Flow.

 ■ On-premises data gateway (personal mode) Only you can use this, and you can
use it only for scheduling refresh in Power BI. The Live Connection connectivity mode,
PowerApps, Logic Apps, Microsoft Flow are not supported.

EXAM TIP

Be aware of the functionality difference between the two gateway installation modes and
be prepared to decide which one is appropriate in any given situation.

From the Library of zhanl mamykova

http://PowerBI.com
http://PowerBI.com

ptg999

 Skill 3.1: Access on-premises data CHAPTER 3 273

In general, a data gateway should be installed on a machine that is always on and connect-
ed to the Internet, because a gateway cannot access on-premises data sources from a machine
that is powered off. You can install up to one gateway in each mode on the same computer,
and you can manage multiple gateways from the same interface on PowerBI.com. If you want
to follow the examples later in this chapter, you should install an on-premises data gateway.

During the installation process, you will need to sign in to your Power BI account, and you
will need to give your gateway a name. You will also need to specify a recovery key that you
can use to move or recover the gateway. Once you are finished installing the gateway, you will
need to add data sources and users to it.

MORE INFO INSTALLING A GATEWAY

For more details on the data gateway installation process, including requirements and
considerations, see the “Install the on-premises data gateway” section of “On-premises data
gateway” at https://docs.microsoft.com/en-us/power-bi/service-gateway-onprem#install-
the-on-premises-data-gateway.

Adding data sources to a data gateway
Once you have a gateway installed, you can add data sources to it in Power BI service. For that,
you need to start by clicking Settings > Manage Gateways. At this point, you should see a
page like the one shown in Figure 3-2.

FIGURE 3-2 Gateway settings

From the Library of zhanl mamykova

http://PowerBI.com
https://docs.microsoft.com/en-us/power-bi/service-gateway-onprem#install-the-on-premises-data-gateway
https://docs.microsoft.com/en-us/power-bi/service-gateway-onprem#install-the-on-premises-data-gateway

ptg999

 274 CHAPTER 3 Configure dashboards, reports, and apps in the Power BI Service

If needed, you can enable others to administer the gateway in the Administrators tab. Note
that this does not automatically grant access to each data source in the gateway; you will need
to add users to each data source, which is covered later in this section.

You can add a data source by clicking on the Add Data Sources To Use The Gateway hy-
perlink. Alternatively, you can click on the Add Data Source button above the list of gateways,
or you can click on the ellipsis next to a gateway name and select Add Data Source. You will
then need to give your data source a name and select its type. Currently, Power BI gateways
support over 20 data source types, including the following popular ones:

 ■ SQL Server

 ■ Analysis Services

 ■ File

 ■ Folder

 ■ Web

 ■ OData

In most cases, you do not need a data gateway if you want to access a data source that is
on the web. One of the exceptions is the Web data source, for which you currently need a data
gateway, even though it is not an on-premises data source.

NOTE DATA SOURCE TYPES AND GATEWAYS

Some data types can be used for DirectQuery or Live Connection, while others support
importing data only. For more details, see the “List of available data source types” section
in “On-premises data gateway” at https://docs.microsoft.com/en-us/power-bi/service-gate-
way-onprem#list-of-available-data-source-types,

In the previous chapters, we created a report in Power BI Desktop that combined data from
SQL Server and files. If we want to keep our dataset up to date, we need to schedule refresh,
which can be done by clicking on the ellipsis next to the dataset and selecting Schedule Re-
fresh. If you have not yet configured your data sources properly, you will see the error shown
in Figure 3-3.

FIGURE 3-3 Data sources error

Even though we have a gateway installed, to schedule refresh, we need to add all data
sources first. We can start with SQL Server. Once you choose the SQL Server data source type,
you will need to specify the server and database name, authentication method, username, and
password. In the advanced settings, you have an option to use SSO via Kerberos for Direc-

From the Library of zhanl mamykova

https://docs.microsoft.com/en-us/power-bi/service-gate-way-onprem#list-of-available-data-source-types
https://docs.microsoft.com/en-us/power-bi/service-gate-way-onprem#list-of-available-data-source-types

ptg999

 Skill 3.1: Access on-premises data CHAPTER 3 275

tQuery queries and choose a privacy level setting for this data source. In our case, we can
specify just the server and database name, authentication method and credentials, leaving the
advanced settings as-is. Note that you cannot leave the database name blank, even though
you can connect to a server without specifying a database in Power BI Desktop.

After you enter all settings and click Apply, the webpage is going to look like in Figure 3-4.

FIGURE 3-4 Data source added

At this stage, you can add users to your data source. In the Users tab in Data Source Set-
tings, you add users by specifying their email addresses. You can see an example in Figure 3-5:

FIGURE 3-5 Adding a user to a data source

If you installed the gateway yourself, you are added as a user automatically. For the pur-
poses of our example, you do not need to add anyone else.

From the Library of zhanl mamykova

ptg999

 276 CHAPTER 3 Configure dashboards, reports, and apps in the Power BI Service

MORE INFO SQL SERVER DATA SOURCE

For more details on adding and configuring a SQL Server data source, including DirectQuery
considerations, see “Manage your data source—SQL Server” at https://docs.microsoft.com/
en-us/power-bi/service-gateway-enterprise-manage-sql.

Because SQL Server is not the only data source we are using in our report, we also need to
make sure we can access our files. There are two ways of doing this:

 ■ Add each file individually as a data source

 ■ Add a data source of type Folder

The option you choose depends on your business requirements. In most cases, unless sensi-
tive files are in the same folder as the files you want to grant access to, you can add a folder as a
data source. In our example, we’ll add “C:\Companion” as a data source.

Scheduling refresh
Once all of the necessary data sources are added to our gateway, click on the ellipsis of our
dataset and select Schedule Refresh. We then need to expand the Gateway Connection sec-
tion and select the Use A Data Gateway radio button. It is important to click Apply afterward;
otherwise, you will get an error in the Data Source Credentials section as shown in Figure 3-6.

FIGURE 3-6 Credentials error

To determine whether the gateway can access your data sources successfully, you can click
on the ellipsis next to a dataset and select Refresh Now. Clicking on the ellipsis again will
either display an error (if the refresh attempt was unsuccessful) or the following message will
appear: “A refresh is in progress. Please wait for the current refresh to finish before clicking
Refresh Now.” After some time—depending on the volume of data—you will see a message
similar to this: “LAST REFRESH SUCCEEDED: Fri May 04 2018 11:08:53 GMT+1100 (AUS Eastern
Daylight Time).”

At this stage, we can schedule the refresh in the Scheduled Refresh section. Start by tog-
gling the Keep Your Data Up To Date option to On and then choose Refresh Frequency and
Time. By default, refresh failure notifications will be sent to you via email. Click Apply for your
settings to take effect.

MORE INFO SCHEDULING REFRESH

For more information on how you can schedule refresh, see the “Using the data source for
scheduled refresh” section of “Manage your data source - Import/Scheduled Refresh” at
https://docs.microsoft.com/en-us/power-bi/service-gateway-enterprise-manage-scheduled-
refresh#using-the-data-source-for-scheduled-refresh.

From the Library of zhanl mamykova

https://docs.microsoft.com/en-us/power-bi/service-gateway-enterprise-manage-sql
https://docs.microsoft.com/en-us/power-bi/service-gateway-enterprise-manage-sql
https://docs.microsoft.com/en-us/power-bi/service-gateway-enterprise-manage-scheduled-refresh#using-the-data-source-for-scheduled-refresh
https://docs.microsoft.com/en-us/power-bi/service-gateway-enterprise-manage-scheduled-refresh#using-the-data-source-for-scheduled-refresh

ptg999

 Skill 3.1: Access on-premises data CHAPTER 3 277

Publish reports to the Power BI service from Power BI
Desktop
On the Power BI Desktop Home ribbon, you will see a Publish button, which allows you to
publish your report to the Power BI service. If you click the Publish button and you are not
signed into Power BI, you will be prompted to enter your credentials. If you have more than
one workspace for publishing, you will need to choose one. Furthermore, if the workspace you
are publishing to already contains a dataset with the same name, you will be asked if you want
to replace it. By default, the report will be published to My Workspace.

For example, if you publish a report called Sales to an empty workspace, you will receive the
Success message, which you can see in Figure 3-7.

FIGURE 3-7 Publishing to Power BI window

Once you are done, you can go to Power BI service and see the report.

MORE INFO RE-PUBLISHING FROM POWER BI DESKTOP

When you re-publish a report to Power BI service, you should be aware of certain consider-
ations. For example, certain format changes may be ignored. For more details, see “Publish
from Power BI Desktop” at https://docs.microsoft.com/en-us/power-bi/desktop-upload-
desktop-files.

Edit Power BI service reports by using Power BI Desktop
The report editing experience in Power BI service is similar to Power BI Desktop, though you
are limited to only editing the report itself and not the data model behind it. For instance, you
can create new visuals, but you cannot create new measures.

From the Library of zhanl mamykova

https://docs.microsoft.com/en-us/power-bi/desktop-uploaddesktop-files
https://docs.microsoft.com/en-us/power-bi/desktop-uploaddesktop-files

ptg999

 278 CHAPTER 3 Configure dashboards, reports, and apps in the Power BI Service

If you want to edit a Power BI service report in Power BI Desktop, you can download it as a
.pbix file. For that, you need to open your report in Power BI service, then click File > Down-
load Report. You can see this option in Figure 3-8.

FIGURE 3-8 Download Report option

Clicking Download Report makes Power BI service export the current report as a .pbix
file, which you can then save on your computer and open in Power BI Desktop. If your report
is modified in Power BI service with the new features that are not available in the Power BI
Desktop version that you are using, you will get the following note when opening the report:
“Report layout differences might exist.” You can see the full message in Figure 3-9.

FIGURE 3-9 Report layout differences message

From the Library of zhanl mamykova

ptg999

 Skill 3.2: Configure a dashboard CHAPTER 3 279

Not all reports can be downloaded from Power BI service. For example, you cannot down-
load reports published to Power BI service before 23 November 2016. Also, you can only down-
load the reports to which you have edit access.

MORE INFO EXPORTING REPORTS FROM POWER BI SERVICE

For more information on how to export reports from PowerBI.com, including a list of
limitations and a video overview, see “Export a report from Power BI service to Desktop” at
https://docs.microsoft.com/en-us/power-bi/service-export-to-pbix.

Skill 3.2: Configure a dashboard

So far in Power BI service, we have worked with datasets and reports. One of the limitations of
a report is that it can contain data only from one dataset. When you want to show visuals from
multiple datasets side-by-side, you can display them in a dashboard. In this section, we are go-
ing to review dashboards and how they can be configured.

This section covers how to:
 ■ Add text and images

 ■ Filter dashboards

 ■ Dashboard settings

 ■ Customize the URL and title

 ■ Enable natural language queries

Add text and images
A Power BI dashboard is a single-page collection of visuals, which can be visuals from reports,
as well as other objects such as text and videos. Dashboards are a feature of Power BI service;
they are not available in Power BI Desktop. In the context of dashboards, visuals are called tiles,
and the process of adding a tile to a dashboard is called pinning.

MORE INFO DASHBOARDS IN POWER BI

For a more detailed explanation of Power BI dashboard, how it can be used, and the related
terminology, see “Dashboards in Power BI service” at https://docs.microsoft.com/en-us/
power-bi/service-dashboards.

The dashboard that is created automatically after you publish a report contains one tile
only, which also has the same title as the report. If you click on the tile, you will be taken to the
report.

From the Library of zhanl mamykova

http://PowerBI.com
https://docs.microsoft.com/en-us/power-bi/service-export-to-pbix
https://docs.microsoft.com/en-us/power-bi/service-dashboards
https://docs.microsoft.com/en-us/power-bi/service-dashboards

ptg999

 280 CHAPTER 3 Configure dashboards, reports, and apps in the Power BI Service

There are several ways in which you can add more tiles to a dashboard. When you are in a
report and hover over a visual, you will see a pin icon. Clicking the Pin Visual button opens the
Pin To Dashboard dialog box, which you can see in Figure 3-10.

FIGURE 3-10 Pin to dashboard dialog box

NOTE REPORT THEMES

If you are using a custom theme in your report, you will also have an option of keeping the
theme or using destination theme. Report themes are covered in more detail in Skill 2.5:
“Create and format interactive visualizations.”

If you choose to pin the tile to an existing dashboard, you can select a dashboard from a
drop-down list. Alternatively, you can specify a new dashboard name to create a dashboard
with the visual you are pinning. Once you pin a visual to a dashboard, you will see the Pinned to
Dashboard message, and you will see a new tile in the dashboard.

IMPORTANT CHANGES TO PINNED VISUALS

If you alter a pinned visual in the report—for example, you change formatting—the tile will
stay the same and keep the original formatting. To update the tile, you will need to remove
it and pin the visual again.

By default, clicking on a tile takes you to the report that contains the visual. In contrast to
report visuals, there is no interaction between tiles in a dashboard. If you want your visuals
to be interactive, you can pin a live page to a dashboard. This pins a whole report page to a
dashboard, and you can click on visuals for cross-filtering and cross-highlighting. To pin a live
page, you need to go to a report page of your choice and click Pin Live Page in the top menu.
You will be presented with the same dialog box shown in Figure 3-10, only this time showing

From the Library of zhanl mamykova

ptg999

 Skill 3.2: Configure a dashboard CHAPTER 3 281

a preview of a live page with a Pin Live button instead of a Pin button. Changes in the report
page will be reflected in a pinned live page.

MORE INFO PINNING FROM REPORTS

For more information on how you can pin a visual or a live page to a dashboard, including a
video overview, see “Pin a tile to a Power BI dashboard from a report” at https://docs.micro-
soft.com/en-us/power-bi/service-dashboard-pin-tile-from-report.

Another way to add a tile is to click on the Add Tile button when you are in a dashboard;
this gives you the following options:

 ■ Web Content

 ■ Image

 ■ Text Box

 ■ Video

 ■ Custom Streaming Data

While you can pin an image visual from a Power BI report, the Add Tile option allows you
to pin an image that is not contained in any report. When you select Image and click Next,
you will be able to specify the URL of an image. Optionally, you can specify a title and subtitle.
Clicking Apply will pin the image to your dashboard.

MORE INFO SETTING CUSTOM LINKS

For each tile type in the Add tile menu, you can specify a custom URL that the user will be
taken to the tile is clicked. This feature is going to be covered later in this section.

To add text to your dashboard, you can either pin an existing text visual from a report or
choose the Text Box option in the Add Tile menu in a dashboard. If you choose the latter, you
will be presented with a text editor, where you can use rich text formatting and create hyper-
links.

Once a tile is added, you can edit its settings by hovering over the tile, clicking the ellipsis in
the top-right corner and selecting Edit Details.

MORE INFO DASHBOARD TILES

For a tutorial on how you can edit pinned tiles, see “Edit or remove a dashboard tile” at
https://docs.microsoft.com/en-us/power-bi/service-dashboard-edit-tile.

For more information on what dashboard tiles are, how you can interact with them, and
other ways in which you can pin a tile, see “Dashboard tiles in Power BI” at https://docs.
microsoft.com/en-us/power-bi/service-dashboard-tiles.

From the Library of zhanl mamykova

https://docs.micro-soft.com/en-us/power-bi/service-dashboard-pin-tile-from-report
https://docs.micro-soft.com/en-us/power-bi/service-dashboard-pin-tile-from-report
https://docs.microsoft.com/en-us/power-bi/service-dashboard-edit-tile
https://docs.microsoft.com/en-us/power-bi/service-dashboard-tiles
https://docs.microsoft.com/en-us/power-bi/service-dashboard-tiles

ptg999

 282 CHAPTER 3 Configure dashboards, reports, and apps in the Power BI Service

MORE INFO ADDING TILES TO A DASHBOARD

Details on how you can add videos, web content, and custom streaming data are outside
of scope of this book. For more information on the topic, including a video overview, see
“Add image, text, video, and more to your dashboard” at https://docs.microsoft.com/en-us/
power-bi/service-dashboard-add-widget.

Filter dashboards
Currently, it’s not possible to filter a dashboard in the same manner as you can filter a report.
There are a few options to restrict what a user can see in a dashboard.

First, if you only want to remove some tiles, you can duplicate a dashboard and keep only
the visuals you want. To duplicate a dashboard, you need to navigate to the dashboard, click on
the ellipsis in the top-right corner and select Duplicate Dashboard. You will need to specify
a new dashboard name, and you will then be able to remove the unwanted tiles. This option
keeps the displayed values the same.

MORE INFO CREATING A COPY OF A DASHBOARD

For more details on the process of copying a dashboard, see “Create a copy of a dashboard
in Power BI service” at https://docs.microsoft.com/en-us/power-bi/service-dashboard-copy.

Second, you can filter visuals in a report and pin them in their filtered state to a dashboard.
You do not need to save a filtered report; the tiles will inherit all applied filters. This option
requires the creation of a new dashboard if you want to only display filtered tiles.

MORE INFO DASHBOARD FILTERS

To read more about what is involved in filtering dashboard contents, see an article by Pow-
erDAX, “Power BI Dashboard Filters” at https://powerdax.com/power-bi-dashboard-filters/.

Third, you can employ Row-Level Security, which filters underlying data depending on
security rules defined for each user. This option allows you to keep a single dashboard while
showing different values to different users.

MORE INFO ROW-LEVEL SECURITY

Configuring Row-Level Security needs to be done in Power BI Desktop before it can be used
in Power BI service. We are going to review this feature in Skill 3.4: “Configure security for
dashboards, reports, and apps.”

From the Library of zhanl mamykova

https://docs.microsoft.com/en-us/power-bi/service-dashboard-add-widget
https://docs.microsoft.com/en-us/power-bi/service-dashboard-add-widget
https://docs.microsoft.com/en-us/power-bi/service-dashboard-copy
https://powerdax.com/power-bi-dashboard-filters/

ptg999

 Skill 3.2: Configure a dashboard CHAPTER 3 283

Dashboard settings
When you publish a report, a dashboard is created automatically, and it has the same name
as the file you publish. You can rename a dashboard by right-clicking on it or clicking on the
ellipsis next to its name and selecting Rename. Alternatively, you can select Settings, or, when
you are in the dashboard, you can click on the ellipsis in the top-right corner of the screen and
select Settings. You will then be able to specify a new dashboard name.

In dashboard settings, you can also enable or disable Q&A and dashboard tile flow; the
latter option helps you with maintaining a contiguous tile layout in your dashboard and is
disabled by default. We are going to cover the Q&A feature, which is enabled by default, later
in this section.

Customize the URL and title
In a Power BI dashboard, you can set a title and subtitle for every tile, as well as display the
last time the tile was refreshed. You can set these options if you hover over a tile and click Edit
Details. You can turn off the title and subtitle by unchecking Display Title And Subtitle. If
you enable the title and subtitle but leave both fields blank, the tile inherits the title from the
report visual, if any. If you tick the Display Last Refresh Time checkbox in the Functionality
section, the title and subtitle will be forced to be displayed; you will need to specify a custom
title. Otherwise, you will get the following error: “Title can’t be empty.”

In addition to this, almost any tile can be set to be a link. By default, if a tile is a pinned visu-
ally from a report, clicking on the tile will take you to the report that contains the visual. To set
a custom link for a tile, you need to enable the Set Custom Link option in the Functionality
section. You will then need to choose between two link types:

 ■ External Link You can point to a URL outside of PowerBI.com.

 ■ Link To A Dashboard Or Report In The Current Workspace This allows you to point
to a dashboard or a report within the same workspace.

If you choose the first option, you will need to specify a URL. You will also have an option to
open the link in the same tab; by default, the link will open in a new tab.

Choosing the second option allows you to select a report or dashboard to link to from the
current workspace. Note that the report or dashboard you select from the drop-down list does
not need to be related to the tile; it can be any report or dashboard from the current work-
space. You can see the Tile Details pane in Figure 3-11.

From the Library of zhanl mamykova

http://PowerBI.com

ptg999

 284 CHAPTER 3 Configure dashboards, reports, and apps in the Power BI Service

FIGURE 3-11 Tile details

 Once you click Apply, you can use the tile as a link.

NOTE HYPERLINKS IN TEXT BOXES

If you have a hyperlink as part of your text box, you will still be able to click on it even if you
set a custom URL for your tile.

Enable natural language queries
Both Power BI Desktop and Power BI service allow you to create visualizations that provide an-
swers to specific questions. This often requires picking fields and placing them in the relevant
field wells of a visual of your choice. While this gives you great control over formatting, it will
not work if you have read-only access to content.

Another way to explore data in Power BI is to use Q&A (also known as natural language
queries). This feature enables you to get answers to your questions by typing them in natural
language. Even users with read-only access can query datasets in a natural language.

Q&A in Power BI service
To use the Q&A feature in a dashboard, you need to make sure that it is enabled in dashboard
settings. If it is enabled, the Q&A box appears above all visuals in the dashboard canvas. You
can see the question box as it appears for a user with read-only access in Figure 3-12.

From the Library of zhanl mamykova

ptg999

 Skill 3.2: Configure a dashboard CHAPTER 3 285

FIGURE 3-12 Q&A question box

In a natural query, you can define categorical and numerical values, as well as the chart
type. For example, you can type the following query:

total profit by calendar year label as column chart

Once you click on the Q&A box, a list of terms that appear in the dataset will be displayed.
These may include fields, hierarchies, tables, and page names. It is possible to add your own
featured questions to this list so that they are displayed when a user clicks on the Q&A box in
the Power BI service. For that, you need to follow the next steps:

1. Click on the ellipsis next to the dataset.

2. Click Schedule Refresh.

3. Expand Featured Q&A Questions.

4. Click Add A Question.

5. Type your query in the box. In our example, we can type top stock item by quantity.

6. Click Apply.

Now your question will appear alongside the Q&A terms.

From the Library of zhanl mamykova

ptg999

 286 CHAPTER 3 Configure dashboards, reports, and apps in the Power BI Service

MORE INFO FEATURED QUESTIONS FOR Q&A

For more details on how you can add featured questions, including a video tutorial, see
“Create featured questions for Power BI Q&A” at https://docs.microsoft.com/en-us/power-bi/
service-q-and-a-create-featured-questions.

You can see the Q&A area with a featured question in Figure 3-13.

FIGURE 3-13 Q&A terms

As soon as you type total profit, you will get a card visual. Once you add by calendar year
label, you will see a bar chart. Finally, typing as column chart will transform the bar chart into
a column chart. You can see the results of the above query in Figure 3-14.

FIGURE 3-14 Q&A in action

From the Library of zhanl mamykova

https://docs.microsoft.com/en-us/power-bi/service-q-and-a-create-featured-questions
https://docs.microsoft.com/en-us/power-bi/service-q-and-a-create-featured-questions

ptg999

 Skill 3.2: Configure a dashboard CHAPTER 3 287

Each keyword or set of keywords will be underlined and can be clicked on to see the alter-
natives. For example, instead of column chart, choose pie chart. If needed, you can expand
the Visualizations and Fields panes for more granular control over the visual.

When you ask questions of your data, Power BI relies on built-in heuristics to answer them.
For instance, “color” and “colors” are going to be deemed equivalent even if a column is named
“Color” in your data model.

MORE INFO Q&A TERMINOLOGY

If you see a grayed-out keyword, it means that Power BI does not recognize it. In cases like
this, you can try phrasing your question differently. For more details on the words and ter-
minology that Q&A understands, see “Tips for asking questions in Power BI Q&A” at https://
docs.microsoft.com/en-us/power-bi/service-q-and-a-tips.

Once you are satisfied with the visual created using the Q&A feature, you can pin it to your
dashboard clicking the Pin Visual button in the top-right corner.

Q&A in Power BI Desktop
Q&A is also available in Power BI Desktop, and it works in a similar way to Power BI service.
Depending on the version of Power BI Desktop you are using, you may need to enable Q&A
in preview features by clicking File > Options And settings > Options > Preview Features
> Q&A. Once you make sure that Q&A is available, you can click Home > Insert > Ask A
Question. Alternatively, you can double-click on empty space in a canvas, which will create a
placeholder visual with a question box above it in which you can type. You can see the Q&A
visual in Figure 3-15.

FIGURE 3-15 Ask a Question

From the Library of zhanl mamykova

https://docs.microsoft.com/en-us/power-bi/service-q-and-a-tips
https://docs.microsoft.com/en-us/power-bi/service-q-and-a-tips

ptg999

 288 CHAPTER 3 Configure dashboards, reports, and apps in the Power BI Service

After you type your question, you can refine the visual by formatting it or choosing a differ-
ent visual type. Once you click away, you will not be able to modify your question; if you need
to ask a different question, you will need to start from the beginning.

MORE INFO Q&A IN POWER BI

For a general overview of Q&A in Power BI service and Power BI Desktop, including details
on how Q&A answers questions, see “Q&A in Power BI service and Power BI Desktop” at
https://docs.microsoft.com/en-us/power-bi/power-bi-q-and-a.

If you want to follow a video tutorial on how to use Q&A, see “Tutorial: How to use Q&A
to create visualizations and build reports” at https://docs.microsoft.com/en-us/power-bi/
power-bi-tutorial-q-and-a.

Synonyms
You can introduce your own keywords and make Power BI recognize them. For example, if
business users often substitute pieces for quantity, you can create a synonym for this. To do
that, you need to follow the next steps:

1. Open your report in Power BI Desktop.

2. Go to the Relationships view.

3. Select Modeling > Synonyms.

4. Select the table that contains the field for which you want to create a synonym. In our
example, select the Sale table.

5. In the Synonyms pane, scroll down to the Quantity field.

6. Click on the input field; a comma will be automatically inserted after quantity.

7. Type pieces.

8. Save your changes.

9. Re-publish your report.

You can see the Synonyms pane with an added keyword in Figure 3-16.

From the Library of zhanl mamykova

https://docs.microsoft.com/en-us/power-bi/power-bi-q-and-a
https://docs.microsoft.com/en-us/power-bi/power-bi-tutorial-q-and-a
https://docs.microsoft.com/en-us/power-bi/power-bi-tutorial-q-and-a

ptg999

 Skill 3.2: Configure a dashboard CHAPTER 3 289

FIGURE 3-16 Synonyms

You can now use the pieces keyword. For instance, the following natural language query
will create a bar chart that shows top three colors by quantity sold:

top 3 colors by pieces

Even though you typed pieces, you still see Quantity in the chart, which can be seen in
Figure 3-17.

From the Library of zhanl mamykova

ptg999

 290 CHAPTER 3 Configure dashboards, reports, and apps in the Power BI Service

FIGURE 3-17 Using a synonym in a query

Note that one of the visual level filters is “top 3 by Quantity.” Q&A can automatically filter
data if the query asks for it.

MORE INFO USING SYNONYMS

You can use synonyms to simulate a translation of your data model. For example, if you have
colleagues in France who are going to use your data model, you can create synonyms for
each field in French, which will make it easier for your colleagues to write natural language
queries. For more details on the approach and using synonyms in general, see “Power BI
Synonyms, Take Q&A Experience to the Next Level” by Soheil Bakhsi at http://biinsight.com/
power-bi-synonyms-take-qa-experience-to-the-next-level/.

MORE INFO Q&A IN POWER BI SERVICE AND CORTANA

Cortana is a virtual assistant created by Microsoft. It can answer your questions, including
questions regarding your data in Power BI service. It can also display custom answer pages
specifically designed for Cortana. Enabling Cortana to access Power BI datasets is outside the
scope of this book; for more information on making Cortana and Power BI work together, in-
cluding technical requirements, see “Quickly find and view your Power BI data using Cortana
for Power BI” at https://docs.microsoft.com/en-us/power-bi/service-cortana-intro.

From the Library of zhanl mamykova

http://biinsight.com/power-bi-synonyms-take-qa-experience-to-the-next-level/
http://biinsight.com/power-bi-synonyms-take-qa-experience-to-the-next-level/
https://docs.microsoft.com/en-us/power-bi/service-cortana-intro

ptg999

 Skill 3.3: Publish and embed reports CHAPTER 3 291

Skill 3.3: Publish and embed reports

There are many ways to share your Power BI report with others. In this section, we are going to
review the steps to make a report publicly available to anyone and how to publish a report to
SharePoint and Power BI Report Server.

This section covers how to:
 ■ Publish to web

 ■ Publish to Microsoft SharePoint

 ■ Publish reports to a Power BI Report Server

Publish to web
You can make your Power BI report public using the Publish to Web feature in Power BI service.
This option gives you an HTML code that you can use to embed a report in a blog post, on a
web page, or elsewhere.

To publish your report to the web, you need to navigate to your report in Power BI service
and click File > Publish To Web. You will then see the Embed In A Public Website window,
where you will need to click Create Embed Code and then Publish. Doing so will take you
to the Success window shown in Figure 3-18; from here, you can copy the link for sharing the
report as well as the HTML code to paste into your blog or website.

FIGURE 3-18 Publishing to the web

From the Library of zhanl mamykova

ptg999

 292 CHAPTER 3 Configure dashboards, reports, and apps in the Power BI Service

When publishing, you can choose from one of the three pre-defined sizes:

 ■ 680 x 510 px

 ■ 800 x 600 px

 ■ 933 x 700 px

If needed, you can manually adjust the report size in the HTML code. You can also adjust
the view mode in Power BI service by clicking View and then clicking one of the options below.
Alternatively, you can adjust view mode in Power BI Desktop by clicking View tab > View
grouping > Page View and then one of the three options:

 ■ Fit To Page This option fits a report page into the window. Because the window may
also contain extraneous elements such as a navigation bar, and the aspect ratio of the
report and the window may be different, this option may result in grey bars shown out-
side of report content to fill the empty space in the window.

 ■ Fit To Width This option only fits the width of a report page to the screen, which may
result in a vertical scrollbar. The original aspect ratio is preserved.

 ■ Actual Size This option makes sure that the size of the report is preserved from the
report settings. This might result in scrollbars.

Your report will contain a navigation bar that is 56 px tall. You can adjust the frame dimen-
sion size by this figure for a better fit. For example, if you wanted to embed a report that is 640
by 480 px, you could change that to 640 by 536 px.

IMPORTANT PUBLISH TO WEB SECURITY

There is absolutely no security when you use the Publish To Web feature. There is no
authentication when viewing the report, and anyone on the web who has a link, including
people who find your report through search engines, can access your published report. You
should only use Publish To the Web when the underlying data, including the lowest detail
level, is not sensitive.

If you have previously published a report to the web, you will see the same window as
shown in Figure 3-18, except it will be titled Embed Code. Only one embed code can be cre-
ated per report. Unlike pinned visuals, reports that are published to web are updated after you
make changes to them, although it may take up to an hour for updates to propagate.

Manage embed codes
All embed codes that you created previously can be managed in Power BI service by clicking
Settings, Manage Embed Codes. You can see the Manage Embed Codes page in Figure 3-19.

From the Library of zhanl mamykova

ptg999

 Skill 3.3: Publish and embed reports CHAPTER 3 293

FIGURE 3-19 Manage embed codes

On the Manage embed codes page, you can see a list of reports for which you created
embed codes, along with their status and the date when you created a link. The Status column
displays one of the following statuses:

 ■ Active The report is available for anyone on the web.

 ■ Blocked The report has been blocked by Microsoft; if you believe this was an error,
you can contact support.

 ■ Not Supported The report uses one of the unsupported features discussed below.

 ■ Infringed The tenant policy regarding Publish To Web was changed after the report
had been published.

You can also copy the embed code by clicking on the ellipsis and then selecting Get Code. If
you need to delete a code, you can click Delete after clicking on the ellipsis.

Limitations
Not all reports can be published to the web. The following are some of the unsupported sce-
narios when publishing to web:

 ■ R visuals

 ■ Reports with row-level security

 ■ Reports that connect live to on-premises Analysis Services Tabular

 ■ Reports shared with you

Also, a Power BI administrator can disable publishing to web for specific users or a group
of users. If you are a Power BI administrator, you can click Settings > Admin Portal > Tenant
settings, and expand Publish To Web; from here, you can disable the feature for the entire
organization or for specific security groups.

From the Library of zhanl mamykova

ptg999

 294 CHAPTER 3 Configure dashboards, reports, and apps in the Power BI Service

MORE INFO PUBLISH TO WEB

For more information on the Publish to Web feature, including a video overview, security
considerations, and more details on limitations, see “Publish to web from Power BI” at
https://docs.microsoft.com/en-us/power-bi/service-publish-to-web.

Publish to Microsoft SharePoint
You can securely embed interactive Power BI reports in SharePoint Online. This option is drasti-
cally different from Publish To Web because it is fully secure. To embed Power BI content in
SharePoint Online, you need Modern Pages.

MORE INFO MODERN PAGES

Modern Pages facilitate creation of content in SharePoint Online and have been available
since 2016. For more information on Modern Pages, see “Customizing ‘modern’ site pages”
at https://docs.microsoft.com/en-us/sharepoint/dev/solution-guidance/modern-experience-
customizations-customize-pages

To embed a Power BI report in a SharePoint page, you need to get a report link and use it in
a web part in SharePoint Online. To get a report link, you can navigate to a report and click File
> Embed In SharePoint Online, which will open the Embed Link For SharePoint window,
from which you can copy the link as shown in Figure 3-20.

FIGURE 3-20 Embed link for SharePoint

Alternatively, you can copy the report URL from the navigation bar of your browser.

IMPORTANT REPORT URL

When you copy the report URL from the navigation bar of your browser, it might contain
a reference to a specific page of your report. If you want to embed only the page you
selected, you can leave it as-is; otherwise, you need to remove the portion that starts with
“/ReportSection.” Or you can copy the link from the Embed Link For SharePoint window as
described above.

From the Library of zhanl mamykova

https://docs.microsoft.com/en-us/power-bi/service-publish-to-web
https://docs.microsoft.com/en-us/sharepoint/dev/solution-guidance/modern-experience-customizations-customize-pages
https://docs.microsoft.com/en-us/sharepoint/dev/solution-guidance/modern-experience-customizations-customize-pages

ptg999

 Skill 3.3: Publish and embed reports CHAPTER 3 295

Report embedding
Once you have the link, you can embed it in SharePoint online. To do so, you need to create a
web part in a page. In the following steps, we are going to create a site page from scratch:

1. Navigate to your SharePoint Online site.

2. Click New > Site Page.

3. Click on the Name Your Page section and give your page a name.

4. Click the + icon (when you hover over it, a screentip reading Add A New Web Part In
Column One when you hover over it.

5. Click Power BI. You can use the search bar to locate the button.

6. Click Add Report.

7. Paste your report link.

8. Select the page name from the Page Name drop-down list.

9. Click Publish.

Your site page will then be published, and SharePoint Online will provide you with a page
link. You can edit your page by clicking Edit in the top-right corner of the page. If you want to
edit the Power BI web part, you need to click on the Edit web part button that has a pencil icon
and is to the left of the report page. In addition to the report link and report page name, you
can change the following settings:

 ■ Display You can choose either 4:3 or 16:9 ratio for your Power BI web part. Note that
you cannot set custom size in pixels. The default selection is 16:9.

 ■ Show Navigation Pane You can either show or hide the navigation pane that con-
tains page names and appears at the bottom. The default setting is On.

 ■ Show Filter Pane You can either show or hide the filter pane that appears on the
right. The users will not be able to add new fields to the pane, but they will be able to
change the filters that are already in place, as well as remove them. The default setting
is Off.

Report security
If a user has access to a SharePoint Online site page that contains a Power BI report, the user
does not automatically have access to the report. If you do not have access to a report, the
report will not load, and you might see the message shown in Figure 3-21.

FIGURE 3-21 Inaccessible report

From the Library of zhanl mamykova

ptg999

 296 CHAPTER 3 Configure dashboards, reports, and apps in the Power BI Service

NOTE REPORT NOT LOADING

Also, a report might not load in SharePoint Online because it has been deleted after embed-
ding.

Report security is managed in Power BI service. There are two ways to grant a user access to
an embedded report. First, if you use an Office 365 group for your SharePoint Online team site,
you can add a user to the app workspace of the report; doing so will grant the user access to all
contents of the workspace. Second, you can share a report directly by navigating to the report
and clicking Share in the top-right corner.

MORE INFO SECURING POWER BI CONTENT

Configuring security for your dashboards and reports will be covered in more detail later in
the chapter in Skill 3.4: Configure security for dashboards, reports, and apps.

MORE INFO SHAREPOINT ONLINE REPORT EMBEDDING

For more details on embedding a report in SharePoint Online, including considerations on
multi-factor authentication and limitations, see “Embed with report web part in SharePoint
Online” at https://docs.microsoft.com/en-us/power-bi/service-embed-report-spo.

Publish reports to a Power BI Report Server
So far in this chapter, we considered publishing reports in the cloud only. With Power BI Report
Server, you have an option to publish your report on-premises. Power BI Report Server is
included with Power BI Premium. It is also included with the purchase of SQL Server Enterprise
Edition with Software Assurance.

NOTE CONFIGURING POWER BI REPORT SERVER

This section assumes that you already have Power BI Report Server installed. Power BI
Report Server deployment and configuration are outside of the scope of this book. For a
general overview of Power BI Report Server, see “Get started with Power BI Report Server”
at https://docs.microsoft.com/en-us/power-bi/report-server/get-started.

For details on how to install Power BI Report Server, see “Quickstart: Install Power BI Report
Server” at https://docs.microsoft.com/en-us/power-bi/report-server/quickstart-install-
report-server.

If you want to publish your report to Power BI Report Server, it is recommended that you in-
stall the Power BI Desktop version that is optimized for Power BI Report Server. This is because
Power BI Report Server features are released on a different schedule from Power BI service and
the regular Power BI Desktop, and not all features from the regular Power BI Desktop version
are supported by Power BI Report Server, even if the two are released at the same time. You

From the Library of zhanl mamykova

https://docs.microsoft.com/en-us/power-bi/service-embed-report-spo
https://docs.microsoft.com/en-us/power-bi/report-server/get-started
https://docs.microsoft.com/en-us/power-bi/report-server/quickstart-install-report-server
https://docs.microsoft.com/en-us/power-bi/report-server/quickstart-install-report-server

ptg999

 Skill 3.3: Publish and embed reports CHAPTER 3 297

can have both versions installed on the same machine; by default, the version that was installed
last will be the default app to open Power BI files.

To install Power BI Desktop optimized for Power BI Report Server, navigate to the Power
BI Report Server web portal and click Download > Power BI Desktop. Once you install the
software, you can author your reports. The report building experience is almost identical to
the regular version of Power BI Desktop. The only difference is that some features might not be
supported.

MORE INFO TWO VERSIONS OF POWER BI DESKTOP

There are some differences between the two versions of Power BI Desktop, such as the
list of supported features, release schedule, and publishing options. For a comprehensive
comparison of Power BI Desktop and Power BI Desktop optimized for Report Server, see this
article by Samuel Lester, “Understanding the differences between ‘Power BI Desktop' and
'Power BI Desktop Optimized for Power BI Report Server'" at https://blogs.msdn.microsoft.
com/samlester/2018/02/19/understanding-the-differences-between-power-bi-desktop-and-
power-bi-desktop-optimized-for-power-bi-report-server/.

You can also open an existing report that has a .pbix extension; if you open a report that
was created in the regular version of Power BI Desktop, you might see the message shown in
Figure 3-9. If, instead, you use a regular version of Power BI Desktop to open a report that was
saved in Power BI Desktop optimized for Power BI Report Server, you might see the message
shown in Figure 3-22.

FIGURE 3-22 Report saved in an earlier version

The major difference between the regular version of Power BI Desktop and Power BI Desk-
top optimized for Power BI Report Server is the way you publish reports. Power BI Desktop
optimized for Power BI Report Server does not have the Publish button. Instead, to publish a
report to Power BI Report Server, you need to save your report to the server.

To publish a report to Power BI Report Server from Power BI Desktop optimized for Power
BI Report Server, you need to click File > Save as > Power BI Report Server. You will then see
the Power BI Report Server Selection window shown in Figure 3-23.

From the Library of zhanl mamykova

https://blogs.msdn.microsoft.com/samlester/2018/02/19/understanding-the-differences-between-power-bi-desktop-and-power-bi-desktop-optimized-for-power-bi-report-server/
https://blogs.msdn.microsoft.com/samlester/2018/02/19/understanding-the-differences-between-power-bi-desktop-and-power-bi-desktop-optimized-for-power-bi-report-server/
https://blogs.msdn.microsoft.com/samlester/2018/02/19/understanding-the-differences-between-power-bi-desktop-and-power-bi-desktop-optimized-for-power-bi-report-server/

ptg999

 298 CHAPTER 3 Configure dashboards, reports, and apps in the Power BI Service

FIGURE 3-23 Power BI Report Server Selection

Clicking OK takes you to the Save report window, where you can choose a folder to which
you want to save your report. In the next example, you will save a report called Sales.pbix to
the Wide World Importers folder that has already been created in the report server located at
http://localhost/Reports/. You can see the Save Report window in Figure 3-24.

FIGURE 3-24 Save report window

From the Library of zhanl mamykova

ptg999

 Skill 3.3: Publish and embed reports CHAPTER 3 299

Once you choose a folder and click OK in the Save Report window, the report will be saved,
and you will see the Saving To Power BI Report Server window shown in Figure 3-25.

FIGURE 3-25 Saving to Power BI Report Server

Clicking on the Take Me There hyperlink takes you to the report in Power BI Report Server.
You can see the report as it appears in Power BI Report Server in Figure 3-26.

FIGURE 3-26 Sales report saved to Power BI Report Server

From the Library of zhanl mamykova

ptg999

 300 CHAPTER 3 Configure dashboards, reports, and apps in the Power BI Service

Editing existing reports
One of the differences between Power BI Report Server and Power BI service is that the latter
provides an online report-editing experience that is similar to Power BI Desktop, while the
former does not. Instead, you can edit your reports in Power BI Desktop.

If you need to make changes to an existing report, you can open the report in Power BI
Desktop optimized for Power BI Report Server. There are three ways to open an existing report:

 ■ From the report page in Power BI Report Server For this, you need to click Edit In
Power BI Desktop, which will open the report in Power BI Desktop optimized for Power
BI Report Server.

 ■ From folder in Power BI Report Server When you are in a Power BI Report Server
folder, you can click on the ellipsis next to a report and click Edit In Power BI Desktop,
which will open Power BI Desktop optimized for Report Server. You can see the menu in
Figure 3-27.

FIGURE 3-27 Power BI Report Server folder report menu

 ■ From Power BI Desktop In Power BI Desktop optimized for Power BI Report Server,
you can click File >Open > Power BI Report Server. You will then see the Power BI
Report Server Selection window shown in Figure 3-23, followed by the Open Report
window that is similar to the Save report window shown in Figure 3-24. In the Open
report window, you will need to select the report you want to edit.

Once you make the desired changes and click File > Save, you need to wait for the Saved
successfully message to appear in the bottom right corner of the main window. If you close
Power BI Desktop before the message appears, the changes will not be saved.

From the Library of zhanl mamykova

ptg999

 Skill 3.3: Publish and embed reports CHAPTER 3 301

Commenting reports
Power BI Report Server allows you to add comments to existing reports. When you are on a
report page in Power BI Report Server, click Comments in the top-right corner to open the
Comments pane.

In the Comments pane, you can type your comment in a text box, and you have an option
to attach a file to your comment. Once you have posted your comment, you can edit its text,
and others can reply to it. Comments can be sorted from newest to oldest and vice versa. You
can see a comment and a reply to it as shown in Figure 3-28.

FIGURE 3-28 Comments in Power BI Report Server

In replies, you cannot include attachments. Comments and replies can be deleted if needed
by clicking on the Delete button that is depicted by a trash can icon.

MORE INFO POWER BI REPORT SERVER REPORT COMMENTS

For more information on the commenting system in Power BI Report Server, including per-
missions, see “Add comments to a report in a report server” at https://docs.microsoft.com/
en-us/power-bi/report-server/add-comments.

MORE INFO POWER BI REPORT SERVER REPORTS

For a detailed overview of how you can create reports for Power BI Report Server, see
“Quickstart: Create a Power BI report for Power BI Report Server” at https://docs.microsoft.
com/en-us/power-bi/report-server/quickstart-create-powerbi-report.

From the Library of zhanl mamykova

https://docs.microsoft.com/en-us/power-bi/report-server/add-comments
https://docs.microsoft.com/en-us/power-bi/report-server/add-comments
https://docs.microsoft.com/en-us/power-bi/report-server/quickstart-create-powerbi-report
https://docs.microsoft.com/en-us/power-bi/report-server/quickstart-create-powerbi-report

ptg999

 302 CHAPTER 3 Configure dashboards, reports, and apps in the Power BI Service

Skill 3.4: Configure security for dashboards, reports,
and apps

When sharing Power BI content, you often need to configure security so that each user has the
right level of access. For instance, you might want the regional managers to see only values
from their own regions, while allowing the general manager to see all regions. In this section,
we are going to review the steps you need to take to create a security group, configure access
to Power BI content such as dashboards and app workspaces, and review the Power BI tenant
security settings. Finally, we are going to review Row-Level Security in Power BI.

This section covers how to:
 ■ Create a security group by using the Admin Portal

 ■ Configure access to dashboards and app workspaces

 ■ Configure the export and sharing settings of the tenant

 ■ Configure Row-Level Security

Create a security group by using the Admin Portal
When you share content in Power BI, you can use the email address for each user. While this
works, this solution can be hard to maintain: for example, if you share several reports with
many salespeople and a new salesperson joins, you will need to update the sharing settings
for each report. In cases like this, you can create a security group, add all salespeople to it and
share your reports with the security group. When a new salesperson joins the company, you
will only need to add them to the security group once, and all reports will be immediately
available to them.

Security groups are created in Office 365 Admin Portal, also known as Admin center. To cre-
ate a security group, follow these steps:

1. Sign in at https://www.office.com/.

2. In the Apps section, click Admin. You need to be an Office 365 administrator to access
this app.

3. Click the Expand Navigation Menu button on the left, which has a right arrow icon.

4. Click Groups > Groups. At this point, you will see a page similar to Figure 3-29.

From the Library of zhanl mamykova

https://www.office.com/

ptg999

 Skill 3.4: Configure security for dashboards, reports, and apps CHAPTER 3 303

FIGURE 3-29 Admin center, Groups

5. Click Add A Group.

6. In the Type drop-down list, select Security Group.

7. Type a group name and, optionally, a description. For example, you can call the group
My Security Group.

8. Click Add > Close.

Your new security group will now appear in the list of groups. You can edit a group by
clicking on its row in the list of groups, which will open a settings pane where you can do the
following:

 ■ Delete group

 ■ Edit name and description

 ■ Add owners

 ■ Add members

The settings pane can be seen in Figure 3-30.

From the Library of zhanl mamykova

ptg999

 304 CHAPTER 3 Configure dashboards, reports, and apps in the Power BI Service

FIGURE 3-30 Group settings

To add a member to the group, you need to follow the next steps:

 ■ Click Edit next to Members.

 ■ Click Add Members.

 ■ Search for members and pick them from the list by selecting the checkboxe next to the
members you want to add.

 ■ Click Save > Close > Close.

NOTE SECURITY GROUP MEMBERSHIP

Unlike distribution lists and mail-enabled security groups, security groups do not require its
members to have mailboxes allocated to them. What this means is that you can have a user
who has a Power BI license allocated to her and who is a member of a security group, but
does not have a mailbox. This can save costs in case a user needs access to Power BI but does
not need a working company email.

Distribution lists and mail-enabled security groups are outside of the scope of this book. For
a comprehensive comparison of different group types available in Office 365, see “Com-
pare groups” at https://support.office.com/en-us/article/compare-groups-758759ad-63ee-
4ea9-90a3-39f941897b7d.

When you create an app workspace, an Office 365 group is created automatically. App
workspaces are covered later in this chapter in Skill 3.5: Configure apps and apps workspaces.

From the Library of zhanl mamykova

https://support.office.com/en-us/article/compare-groups-758759ad-63ee-4ea9-90a3-39f941897b7d
https://support.office.com/en-us/article/compare-groups-758759ad-63ee-4ea9-90a3-39f941897b7d

ptg999

 Skill 3.4: Configure security for dashboards, reports, and apps CHAPTER 3 305

MORE INFO MANAGING SECURITY GROUPS IN OFFICE 365

For more information on working with security groups in Office 365, see “Create, edit,
or delete a security group in the Office 365 admin center” at https://support.office.com/
en-us/article/create-edit-or-delete-a-security-group-in-the-office-365-admin-center-
55c96b32-e086-4c9e-948b-a018b44510cb.

Configure access to dashboards and app workspaces
Power BI content can be contained either in your own workspace, called My Workspace, or in
app workspaces. You can share reports and dashboards individually, as well as grant other us-
ers access to app workspaces.

In all cases, sharing Power BI content requires a Power BI Pro license for the report devel-
oper and either Power BI Pro licenses for each report user or Power BI Premium capacity.

MORE INFO COLLABORATING IN POWER BI

For more information on how you can collaborate in Power BI, including ways other than
sharing dashboards and reports and giving access to app workspaces, see “How should I col-
laborate and share in Power BI?” at https://docs.microsoft.com/en-us/power-bi/service-how-
to-collaborate-distribute-dashboards-reports.

Sharing dashboards and reports
When you share a dashboard with a user, the user can see the dashboard as well as click
through to any reports to which the dashboard tiles point. Sharing a report gives a user access
to that report only, but does not provide access to the dashboards that use visuals from the
report. In both cases, users will have read-only access.

To share a dashboard with a user, follow these steps:

1. Navigate to the dashboard you want to share and click Share in the top-right corner.
You will see the Share Dashboard pane like in Figure 3-31.

From the Library of zhanl mamykova

https://support.office.com/en-us/article/create-edit-or-delete-a-security-group-in-the-office-365-admin-center-55c96b32-e086-4c9e-948b-a018b44510cb
https://support.office.com/en-us/article/create-edit-or-delete-a-security-group-in-the-office-365-admin-center-55c96b32-e086-4c9e-948b-a018b44510cb
https://support.office.com/en-us/article/create-edit-or-delete-a-security-group-in-the-office-365-admin-center-55c96b32-e086-4c9e-948b-a018b44510cb
https://docs.microsoft.com/en-us/power-bi/service-how-to-collaborate-distribute-dashboards-reports
https://docs.microsoft.com/en-us/power-bi/service-how-to-collaborate-distribute-dashboards-reports

ptg999

 306 CHAPTER 3 Configure dashboards, reports, and apps in the Power BI Service

FIGURE 3-31 Share dashboard

2. Fill in the email addresses of the users with whom you want to share the dashboard.
Alternatively, you can type the name of the security group that contains the users. In
this example, we are going to share this dashboard with a user called Test User. You can
share with users outside of your tenant, but you will receive a warning shown in Figure
3-32.

FIGURE 3-32 Sharing outside your organization

3. Optionally, you can include a message for the recipients.

4. By default, your recipients can share your dashboard. If you do not want your dash-
board to be shared further, uncheck the Allow Recipients To Share Your Dashboard
checkbox.

5. If you do not want to notify your recipients that you shared a dashboard with them,
uncheck the Send Email Notification To Recipients checkbox.

6. Click Share.

At this stage, the users you shared your dashboard with will have immediate access to it. You
can share a dashboard link with them directly, or they can click Shared With Me in Power BI
service to see the content you shared with them.

To revise the access rights you previously granted, you can click on the Access tab in the
Share dashboard pane (see Figure 3-33).

From the Library of zhanl mamykova

ptg999

 Skill 3.4: Configure security for dashboards, reports, and apps CHAPTER 3 307

FIGURE 3-33 Share dashboard Access tab

By default, the app workspace in which the dashboard is published is listed as Owner in the
Access tab. For every other user, you can change the level of access by clicking on the ellipsis.
For example, the access level of Test User, who previously was granted Read And Reshare ac-
cess, can either be removed or changed to Read.

If you click Manage Permissions, you will be taken to the Manage access page, where you
will see the dashboard and the related content, such as reports and datasets. For each item,
you will be able to revise the access level of each user.

NOTE SHARING A REPORT

The steps you need to follow to share a report are identical to sharing a dashboard.

MORE INFO SHARING DASHBOARDS AND REPORTS

For a video overview and more details on how you can share a dashboard or a report in
Power BI service, including considerations on sharing with people outside of your orga-
nization, see “Share your Power BI dashboards and reports with coworkers and others” at
https://docs.microsoft.com/en-us/power-bi/service-share-dashboards.

Configuring access to app workspaces
If you want to allow users to edit existing reports or dashboards, or create new ones from
shared datasets, you will need to give them access to the app workspace with the content
you want to share. In this section, we review the steps necessary to configure access to app
workspaces; app workspaces are covered in more detail in Skill 3.5: “Configure apps and apps
workspaces.”

From the Library of zhanl mamykova

https://docs.microsoft.com/en-us/power-bi/service-share-dashboards

ptg999

 308 CHAPTER 3 Configure dashboards, reports, and apps in the Power BI Service

If you have an existing app workspace, you can configure access to it in one of two ways: in
Power BI service or in Office 365 Admin center. In Power BI service, you can click Workspaces
and then click on the ellipsis next to the workspace you want to configure access to, and click
Edit Workspace (see Figure 3-34).

NOTE EDITING APP WORKSPACES

Only workspace admins can see the Edit workspace option.

FIGURE 3-34 Editing workspace

In the Privacy section, you can only change whether members can edit Power BI content;
the other drop-down can only be used when you create an app workspace.

MORE INFO APP WORKSPACE PRIVACY

The Privacy section of app workspaces is reviewed in more detail in “Skill 3.5: Configure apps
and apps workspaces.”

From the Library of zhanl mamykova

ptg999

 Skill 3.4: Configure security for dashboards, reports, and apps CHAPTER 3 309

Below the Privacy section, you can see a list of members who already have access to the app
workspace, along with their access rights, which can be either Admin or Member. Admins can
edit workspaces and add other members to them, as well as see and edit all Power BI content in
the workspaces. Members can view Power BI content and might also be able to edit it depend-
ing on the setting chosen in the Privacy section above.

To configure access to an app workspace from Office Admin center, you will need to follow
these steps:

1. In Office Admin center, click Expand Navigation Menu.

2. Click Groups > Groups.

3. Click on the group that has the same name as the app workspace to which you want to
configure access. Note that it will be of type Office 365 group.

4. Click Edit next to Owners, which is the equivalent of Power BI app workspace admins,
or Members.

5. If you clicked Edit next to Owners, click Add Owners; if you clicked Edit next to Mem-
bers, click Add Members.

6. Select the users you want to add; you can use the search bar if needed.

7. Click Save.

8. Click Close > Close > Close.

IMPORTANT APP WORKSPACE ADMINS

The users that you want to add as admins to an app workspace through Office Admin center
need to be added as both Owners and Members to the relevant Office 365 group. If a user is
added only as an Owner but not as a Member, she will not be able to see the app workspace
in Power BI service.

Configure the export and sharing setting of the tenant
By default, Power BI content can be shared with external users and data can be exported
using several options. To change the default export and sharing settings in Power BI service,
click Settings > Admin Portal > Tenant Settings. The Tenant settings tab can be seen in
Figure 3-35.

From the Library of zhanl mamykova

ptg999

 310 CHAPTER 3 Configure dashboards, reports, and apps in the Power BI Service

FIGURE 3-35 Tenant settings

In Tenant settings, you can see the following settings groups:

 ■ Export And Sharing Settings

 ■ Content Pack And App Settings

 ■ Integration Settings

 ■ Custom Visuals Settings

 ■ R Visuals Settings

 ■ Audit and Usage Settings

 ■ Dashboard Settings

 ■ Developer Settings

In this section, we review the Export And Sharing Settings. We also cover Content Pack And
App Settings in Skill 3.5: “Configure apps and apps workspaces.” Other settings are out of the
scope of this section.

MORE INFO POWER BI ADMIN PORTAL

For an overview of Power BI admin portal (including other tabs) as well as details on the
other Tenant settings groups, see “Power BI admin portal” at https://docs.microsoft.com/
en-us/power-bi/service-admin-portal.

In the Export And Sharing settings, you disable or enable the following settings:

 ■ Share Content With External Users This setting allows users to share Power BI con-
tent with users outside of the tenant.

From the Library of zhanl mamykova

https://docs.microsoft.com/en-us/power-bi/service-admin-portal
https://docs.microsoft.com/en-us/power-bi/service-admin-portal

ptg999

 Skill 3.4: Configure security for dashboards, reports, and apps CHAPTER 3 311

 ■ Publish ToWeb This setting allows users to publish reports to the web as detailed in
Skill 3.3: “Publish and embed reports.”

 ■ Export Data This setting controls whether users can export data from dashboard tiles
and report visuals, as well as use the Analyze in Excel feature and connect live to Power
BI service from Power BI Desktop.

 ■ Export Reports As PowerPoint Presentations Disabling this setting prevents users
from exporting Power BI reports as PowerPoint presentations.

 ■ Print Dashboards And Report If you disable this setting, users will not be able to
print dashboard or reports from Power BI service.

Each setting is enabled by default, and you can either disable it for the entire organization
or enable for a subset of your organization. If you want to enable a setting for a subset of your
organization, you have several choices:

 ■ Enable For Specific Security Groups Only This option allows you to enable a setting
only for the groups that you specify, excluding everyone else.

 ■ Enable For The Entire Organization Except For Specific Security Groups This
option allows you to disable a setting only for the groups that you specify, enabling the
setting for everyone else.

 ■ Enable For Specific Security Groups While Excluding Other Security Groups This
option is relevant when you have users that are part of multiple security groups, and
you want to enable access for one group but disallow it to another group of users who
might be part of the first group. An example of this security setup can be seen in Figure
3-36.

FIGURE 3-36 Tenant settings and security groups

From the Library of zhanl mamykova

ptg999

 312 CHAPTER 3 Configure dashboards, reports, and apps in the Power BI Service

If you modify settings for a feature, you will see a red Unapplied Changes message un-
derneath the feature name. Settings are not saved automatically as you change them; to apply
changes, you will need to click the Apply button.

MORE INFO EXPORTING DATA FROM POWER BI

For information on how you can export data from Power BI dashboard tiles and report
visuals, see “Export data from visualizations” at https://docs.microsoft.com/en-us/power-bi/
power-bi-visualization-export-data.

Configure row-level security
A common business requirement is to secure data so that different people who view the same
report can see different subsets of data. In Power BI, this can be accomplished with the feature
called row-level security, abbreviated RLS.

Row-level security restricts data by filtering it at the row-level depending on the rules
defined for each user. To configure row-level security, you first need to define roles in Power BI
Desktop and then assign users to the roles in Power BI service.

NOTE ROW-LEVEL SECURITY AND ANALYSIS SERVICES LIVE CONNECTIONS

Defining roles in Power BI only works for imported data and DirectQuery. When you con-
nect live to an Analysis Services data model, Power BI will rely on row-level security config-
ured in Analysis Services, and you cannot override it by creating roles in Power BI Desktop.
Row-level security in Analysis Services works similarly to Power BI: you define roles and then
allocate users to the roles; for more information on the topic, see “Roles” at https://docs.
microsoft.com/en-us/sql/analysis-services/tabular-models/roles-ssas-tabular.

Creating roles in Power BI Desktop
To create a role in Power BI Desktop, you need to click Modeling > Security > Manage Roles,
and then Create in the Manage Roles window as shown in Figure 3-37. This will create a new
role with a default name of New role.

From the Library of zhanl mamykova

https://docs.microsoft.com/en-us/power-bi/power-bi-visualization-export-data
https://docs.microsoft.com/en-us/power-bi/power-bi-visualization-export-data
https://docs.microsoft.com/en-us/sql/analysis-services/tabular-models/roles-ssas-tabular
https://docs.microsoft.com/en-us/sql/analysis-services/tabular-models/roles-ssas-tabular

ptg999

 Skill 3.4: Configure security for dashboards, reports, and apps CHAPTER 3 313

FIGURE 3-37 Manage roles

When you create a role, you have an option to change the default name to a new one. It is
important to give roles user-friendly names because you will see them in Power BI service, and
you will need to be able to assign users to the correct roles. All roles are listed in the Roles sec-
tion of the Manage roles window.

If you right-click on a role or click on the ellipsis next to a role, you will be presented with
the following options:

 ■ Create This creates a new role and is an alternative to the Create button below the list
of roles.

 ■ Duplicate This will create a copy of the currently selected role.

 ■ Rename This will rename the currently selected role; you can also rename a role by
double-clicking on its name.

 ■ Delete This will delete the currently selected role; this action can also be performed
by clicking Delete below the list of roles.

For each role, you can define a table filter DAX expression for each table. When row-level
security is configured, these expressions will be evaluated against each row of the relevant
table, and only those rows for which the expressions are evaluated as true will be visible.

You can either type a table filter DAX expression from scratch or use the ellipsis menu next
to each table to add an expression that you can then customize. The menu can also be ac-
cessed by right-clicking on a table. There are three options in the menu:

 ■ Add Filter This option lists all columns available in the table, as well as an option
called Hide all rows.

From the Library of zhanl mamykova

ptg999

 314 CHAPTER 3 Configure dashboards, reports, and apps in the Power BI Service

 ■ Copy Table Filter From This option can copy a table filter DAX expression from an-
other role that has a filter expression defined for the table.

 ■ Clear Table Filter This option removes any table filter DAX expression from the table;
this is a shortcut to erasing all text from the Table filter DAX expression area manually.

For example, in the Wide World Importers that we previously created, you can right-click
Date > Add Filter > [Calendar Year]. This will insert an expression like the following one into
the Table filter DAX expression area:

[Calendar Year] = 0

Depending on the data type of a column, you might see a different placeholder DAX ex-
pression, like the following ones:

// Column of type Date

[Date] < DATE(2018,05,23)

// Column of type Text

[Calendar Year Label] = "Value"

// Column of type True/False

[Is Latest]

If you decide to modify the expression, you can then validate it with the checkmark button
in the top-right corner of the Manage roles window. If the expression is invalid, you will see a
warning stating the syntax is incorrect below the Table filter DAX expression area, like the one
shown in Figure 3-38.

FIGURE 3-38 Row-level security syntax error

Next to the checkmark button, there is the cross button, which reverts any changes that
have not been applied yet.

If you want to hide all rows in a table, you can right-click on it and click Add Filter > Hide
All Rows. This will add the following table filter DAX expression:

false

Because false is never going to be true for any row, no rows will be shown in this case.

In our example, we can name our role Year 2016 and create the following table filter DAX
expression in the Date table:

[Calendar Year] = 2016

Also, we can duplicate the role by right-clicking on it and selecting Duplicate. We should then
rename the new role to Year 2015 and modify the Date table filter DAX expression as shown here:

[Calendar Year] = 2015

From the Library of zhanl mamykova

ptg999

 Skill 3.4: Configure security for dashboards, reports, and apps CHAPTER 3 315

IMPORTANT DUPLICATING ROLES

If you duplicate a role before you validate the last added table filter, the table filter will not
be copied to the duplicate role.

Once you make the necessary changes, click Save and publish the report. In this example,
we are going to publish the report as Sales RLS.

Viewing as roles in Power BI Desktop
In Power BI Desktop, you can see what the users with specific roles will see even before you
publish your report to Power BI service and assign users to roles. For this, you need to have at
least one role defined and click Modeling > Security > View As Roles. You will then see the
View as roles window shown in Figure 3-39.

FIGURE 3-39 View as roles

Note that you can view as several roles simultaneously. This is because you can allocate a
single user or a security group to multiple roles in Power BI service; in this case, the security
rules of the roles will be combined using the AND logic. For example, you can select Year 2015
and Year 2016 and click OK. You will then see the report with the bar shown in Figure 3-40.

FIGURE 3-40 Now viewing report as

The report data will now be filtered to years 2015 and 2016. It is important to understand
that the filters applied by row-level security are only applied at query time and not processing
time. This behavior can be clearly demonstrated if you add a calculated column to the Date
table with the following formula:

Number of years column = DISTINCTCOUNT ('Date'[Calendar Year])

From the Library of zhanl mamykova

ptg999

 316 CHAPTER 3 Configure dashboards, reports, and apps in the Power BI Service

At this point, even if you view the report using the Year 2015 or Year 2016 role, or both, the
column will still contain the value of 4, regardless of your choice. On the other hand, if you
define the following measure, it will display different values in a Card visual, depending on
whether you chose one or two roles:

Number of years measure = DISTINCTCOUNT ('Date'[Calendar Year])

Another option in the View As Roles window is Other user. With this option, you can test
dynamic row-level security, which is covered next.

MORE INFO ROW-LEVEL SECURITY IN POWER BI DESKTOP

For more information on how you can create and configure security roles in Power BI Desk-
top, including the currently imposed limitations, see “Row-level security (RLS) with Power BI
Desktop” at https://docs.microsoft.com/en-us/power-bi/desktop-rls.

Dynamic row-level security
The roles we have created so far have been static, which means that all users within a role will
see the same data. If you have many rules according to which you need to secure your data,
this approach might result in creating many roles, as well as updating the data model every
time a new role should be introduced or an old one should be removed.

There is an alternative approach, called dynamic row-level security, which allows you to
show different data to different users within the same role. For this, your data model must con-
tain the usernames of people who should have access to the relevant rows of data. You will also
need to pass the active username as a filter condition. Power BI has two functions that allow
you to get the username of the current user:

 ■ USERNAME Returns the domain and login of the user in the domain\login format.

 ■ USERPRINCIPALNAME Depending on how the Active Directory was set up, this
function usually returns the email address of a user.

NOTE USING USERNAME AND USERPRINCIPALNAME

If your computer is not part of an Active Directory domain, both functions will return the
same result[md]computer name\login. Once you publish your dataset to Power BI service,
both functions will return the email address of the user. These functions can only be used
in measures or table filter DAX expressions; if you try to use either of them in a calculated
column or a calculated table, you will get an error.

To review how dynamic row-level security works using the Wide World Importers data
model we created earlier in the book, we can perform the next steps.

From the Library of zhanl mamykova

https://docs.microsoft.com/en-us/power-bi/desktop-rls

ptg999

 Skill 3.4: Configure security for dashboards, reports, and apps CHAPTER 3 317

1. Right-click the Date table in the Fields pane and click New Column.

2. Specify the following formula:

UserAccess = "test" & FORMAT (‘Date’[Date], "yyyy") & "@xxlbi.com"

3. Create a new security role by clicking Modeling > Security > Manage Roles > Create.

4. Rename the new role to Single Role.

5. In the Manage roles window, right-click on the Date table, then click Add Filter >
[UserAccess].

6. Modify the table filter DAX expression to the following one:

[UserAccess] = USERPRINCIPALNAME()

7. Click Save.

8. Click Modeling > Security > View As Roles.

9. Click the Other User and Single Role checkboxes.

10. In the text field next to Other user, type test2016@xxlbi.com.

11. Click OK.

In the steps above, we created a calculated column that contained a different email address
for each calendar year. In this way, we segregated access to data for each user based on cal-
endar year. We have done so for review purposes; in real life, sales data may be secured based
on region or department, or any other business logic, and these rules are often contained in a
single security table that is maintained manually.

If you followed the steps above, you would see only 2016 data, as well as the bar shown in
Figure 3-41; this bar would appear at the top of the Report or Data view.

FIGURE 3-41 Viewing report as a specific user

At this stage, click Modeling > Security > View As Roles, then change the email address
next to Other user to test2015@xxlbi.com and click OK. There are two things to note here:

 ■ Only 2015 data is showing now.

 ■ You are still using the same role as before Single Role.

Because you are using a single role, this approach is preferable in large-scale implementa-
tions of Power BI where there are many users that need to see different data.

If you are using bidirectional relationships, it is important to note that row-level security
filters only go in one direction by default. This might yield unexpected results. For example, if
we create a table that shows the Target Amount by Calendar Year Label, we will see the target
for one year, but the total target amount for all years at the total level, like in Figure 3-42.

From the Library of zhanl mamykova

ptg999

 318 CHAPTER 3 Configure dashboards, reports, and apps in the Power BI Service

FIGURE 3-42 Target Amount by Calendar Year Label before applying security filters in both directions

This behavior is due to the Date table security filters not reaching the Target table because
there is a bidirectional relationship between them. To make the security filters go in both direc-
tions, you need to do the following:

1. Click Home > Relationships > Manage Relationships.

2. Select the relationship that should be affected by row-level security. In our Wide World
Importers example, it is the relationship between the Date table and the Calendar Year
table.

3. Click Edit, which opens the Edit relationship window.

4. Click the Apply Security Filter In Both Directions checkbox. Note that this option is
active only if the cross filter direction is set to Both.

5. Click OK > Close.

After you follow the steps above, you might notice that the Target amounts are now also
filtered to one year only, as shown in Figure 3-43.

FIGURE 3-43 Target Amount by Calendar Year Label after applying security filters in both directions

MORE INFO DYNAMIC ROW-LEVEL SECURITY

For a detailed overview of dynamic row-level security, see an article by Tri Nguyen, “Dy-
namic RLS (row level security) with Power BI” at https://tringuyenminh92.com/index.
php/2017/08/11/dynamic-rls-row-level-security-with-power-bi/.

Assigning roles in Power BI service
Once you have configured row-level security in Power BI Desktop, you will need to publish
your report to Power BI service and add members to each role. To do this, you can right-click
on the dataset for which you want to configure row-level security and then click Security. You
will be presented with a page as shown in Figure 3-44.

From the Library of zhanl mamykova

https://tringuyenminh92.com/index.php/2017/08/11/dynamic-rls-row-level-security-with-power-bi/
https://tringuyenminh92.com/index.php/2017/08/11/dynamic-rls-row-level-security-with-power-bi/

ptg999

 Skill 3.4: Configure security for dashboards, reports, and apps CHAPTER 3 319

FIGURE 3-44 Row-Level Security page

On the left side of the Row-Level Security page, you can see a list of all roles in the dataset.
The numbers in brackets show how many members each role has. On the right, you can view,
add, or remove members for the selected role.

To add a member to a role, you need to select a role on the left first, then enter email ad-
dresses or security groups in the People Or Groups Who Belong To This Role field. As an ex-
ample, we can add My Security Group to the Year 2015 role. After you enter the security group
name, you need to click Add > Save. The changes will be applied immediately.

If you want to remove a member from a role, you can click on the cross next to the member
and then Save.

Viewing as roles in Power BI service
Like the View As Roles feature in Power BI Desktop, you can test roles in Power BI service. For
this, you need to hover over a role on the Row-Level Security page, click the ellipsis, and then
click Test As Role. You will then see the way a report appears to members of the role, like in
Figure 3-45.

From the Library of zhanl mamykova

ptg999

 320 CHAPTER 3 Configure dashboards, reports, and apps in the Power BI Service

FIGURE 3-45 Testing a role in Power BI service

If needed, you can test a combination of roles or view as a specific person by clicking on the
role in the blue bar at the top and selecting the desired parameters. Once you are satisfied with
how the roles work, you can click Back To Row-Level Security.

IMPORTANT ROW-LEVEL SECURITY AND WORKSPACE PRIVACY

Row-level security will only work if the workspace privacy is set to Members can only view
Power BI content. Workspace admins and members with edit rights will always see the
whole dataset regardless of the security settings, even though the Test as role feature may
show a restricted dataset.

MORE INFO ROW-LEVEL SECURITY IN POWER BI SERVICE

For an overview of how you can configure row-level security in Power BI service, including a
video tutorial, limitations and common issues, see “Row-level security (RLS) with Power BI”
at https://docs.microsoft.com/en-us/power-bi/service-admin-rls.

Skill 3.5: Configure apps and apps workspaces

You can collaborate with others on creating Power BI content in app workspaces. Once you
are done with creating datasets, reports, and dashboards, you can package your content as
apps and distribute them in your organization. In this section, we are going to review the skills

From the Library of zhanl mamykova

https://docs.microsoft.com/en-us/power-bi/service-admin-rls

ptg999

 Skill 3.5: Configure apps and apps workspaces CHAPTER 3 321

necessary to create and configure a Power BI app workspace, as well as create, publish, and
update apps.

This section covers how to:
 ■ Create and configure an app workspace

 ■ Publish an app

 ■ Update a published app

 ■ Package dashboards and reports as apps

Create and configure an app workspace
To create an app workspace in Power BI service, you need to click Workspaces > Create App
Workspace. You will then see the Create an app workspace menu shown in Figure 3-46.

FIGURE 3-46 Create an app workspace

In the menu, you will need name your app workspace and choose its privacy level. The two
available options are as follows:

 ■ Public Anyone can see what’s inside

 ■ Private Only approved members can see what’s inside

The default option is Private. Note that in case of public workspaces, “anyone” does not
mean anyone on the Internet; instead, it means that users with an Exchange Online and a
Power BI Pro license can make themselves members of the group through an Outlook app.

From the Library of zhanl mamykova

ptg999

 322 CHAPTER 3 Configure dashboards, reports, and apps in the Power BI Service

MORE INFO JOINING AN APP WORKSPACE

To become a member of a public app workspace, a user would need to join a group in Out-
look, which can be done with a desktop app or Outlook on the web. For detailed instruc-
tions, see “Join a group in Outlook” at https://support.office.com/en-us/article/join-a-group-
in-outlook-2e59e19c-b872-44c8-ae84-0acc4b79c45d.

You can also choose who can edit Power BI content by selecting either of the following two
options in the next drop-down list:

 ■ Members Can Edit Power BI Content

 ■ Members Can Only View Power BI Content

By default, members are given Members Can Edit Power BI Content access. As discussed
in Skill 3.4, row-level security only works for members with read-only access.

You can add members by typing their email addresses in the Add workspace members text
field and clicking Add. For each member, you can specify if they are going to be an Admin or a
Member; the default is Member.

In the advanced settings, you can allocate the workspace to a Premium capacity if it is avail-
able in your organization.

MORE INFO MANAGING APP WORKSPACES

For more information on how you can manage your app workspaces, including setting an
app image and description, see “Manage your app workspace in Power BI and Office 365” at
https://docs.microsoft.com/en-us/power-bi/service-manage-app-workspace-in-power-bi-
and-office-365.

MORE INFO COLLABORATING IN APP WORKSPACES

Because Power BI app workspaces are Office 365 groups, you can also collaborate in app
workspaces outside of Power BI service, including having group conversations and schedul-
ing events. For more details, see “Collaborate in your Power BI app workspace” at https://
docs.microsoft.com/en-us/power-bi/service-collaborate-power-bi-workspace.

Publish an app
When you are ready to share your reports and dashboards with users in your organization, you
can publish an app. An app is a collection of Power BI items, such as dashboard, reports, and
workbooks, packaged together. Only members who have edit access to an app workspace can
publish apps. Currently, there can only be one app per app workspace.

To publish an app in Power BI service, you need to go to the app workspace view first. For
this, you need to click Workspaces in the navigation pane on the left and click the app work-
space from which you want to publish an app (see Figure 3-47).

From the Library of zhanl mamykova

https://support.office.com/en-us/article/join-a-group-in-outlook-2e59e19c-b872-44c8-ae84-0acc4b79c45d
https://support.office.com/en-us/article/join-a-group-in-outlook-2e59e19c-b872-44c8-ae84-0acc4b79c45d
https://docs.microsoft.com/en-us/power-bi/service-manage-app-workspace-in-power-bi-and-office-365
https://docs.microsoft.com/en-us/power-bi/service-manage-app-workspace-in-power-bi-and-office-365
https://docs.microsoft.com/en-us/power-bi/service-collaborate-power-bi-workspace
https://docs.microsoft.com/en-us/power-bi/service-collaborate-power-bi-workspace

ptg999

 Skill 3.5: Configure apps and apps workspaces CHAPTER 3 323

FIGURE 3-47 App workspace view

In our Wide World Importers example, we have one dashboard, called Sales.pbix, and two
reports: Sales and Sales RLS, which also have datasets with the same names. Next to each item,
there are a number of actions available, depending on the item type; the reader is encouraged
to review the actions on their own.

To publish an app, you need to click the Publish App button in the top-right corner of the
window. You will then be taken to the Publish App page, where you will see three tabs: De-
tails, Content, and Access. The Details tab is shown in Figure 3-48.

FIGURE 3-48 App details

From the Library of zhanl mamykova

ptg999

 324 CHAPTER 3 Configure dashboards, reports, and apps in the Power BI Service

In the Details tab, you need to enter an app description to help users understand its con-
tents. You can also personalize your app by selecting a background color. For example we can
enter Exam Ref App as description. Once you specify description, you may click the Content
tab, shown in Figure 3-49.

FIGURE 3-49 App content

In the Content tab, you can see the Power BI content that will be published across three
categories: Dashboards, Reports, and Datasets. Workbooks are listed in the Reports section. At
this stage, you cannot exclude any items; we are going to review the steps you need to take to
select specific items for an app later in this chapter.

Below the app content, you can specify the app landing page, which is what users who go to
your app will see first. You can choose either of the following two options:

 ■ Specific Content This can be a dashboard or a report, which you can select from the
drop-down list below.

 ■ None Users will see the app contents page instead of a specific item.

By default, Specific content is selected, though you need to select the landing item. In our
example, we are going to select None. We can now proceed to the Access tab, shown in Figure
3-50.

From the Library of zhanl mamykova

ptg999

 Skill 3.5: Configure apps and apps workspaces CHAPTER 3 325

FIGURE 3-50 App access

For your app, you can choose to publish it to the entire organization or for specific individu-
als or groups. The default selection is Specific Individuals Or Group. If you choose to keep
the setting, you will need to enter email addresses of individuals or groups below.

Below the email addresses input area, you can see a disabled checkbox, Install App Auto-
matically. This option, if enabled, allows you to install apps automatically for specific indi-
viduals or groups, but not for the entire organization. To enable this option, you need to click
Settings > Admin Portal > Tenant Settings > Content Pack And App Settings > Push
Apps To End Users > Disabled (this will change the setting to Enabled), Apply. As with other
tenant settings, this feature can be enabled for the entire organization or a subset of it.

In our example, we can select Entire Organization, which does not allow you to install app
automatically regardless of your tenant settings. Once we click Finish in the top-right corner,
we will see the Ready To Publish window, where we need to click Publish. After this, we will
see the Successfully Published window, shown in Figure 3-51.

From the Library of zhanl mamykova

ptg999

 326 CHAPTER 3 Configure dashboards, reports, and apps in the Power BI Service

FIGURE 3-51 Successfully Published

In this window, you can copy the app link and share it with users to which you have given
access. Alternatively, to get an app, a user can click Apps in the navigation pane in Power BI
service, and then Get Apps, which will open the AppSource window, shown in Figure 3-52.

FIGURE 3-52 AppSource Apps for Power BI

In the AppSource window, they will need to click Get It Now next to the app they want
to get. Note that a user does not need to be a member of the app workspace to get the app.
Regardless of how the users get the app, it will then appear in Apps. If an app was installed
automatically, users would not be able to delete it from their list of apps.

From the Library of zhanl mamykova

ptg999

 Skill 3.5: Configure apps and apps workspaces CHAPTER 3 327

MORE INFO INSTALLING APPS

For more details on how users can install and use apps, see “Install and use apps with
dashboards and reports in Power BI” at https://docs.microsoft.com/en-us/power-bi/service-
install-use-apps.

Unpublishing an app
If you want to unpublish an app, you can do so by clicking the ellipsis in the top-right corner of
the app workspace and clicking Unpublish App. You will need to confirm your action by click-
ing Unpublish in the Unpublishing an app window. Doing so will not delete the app workspace
contents; instead, the app will be removed from Apps list of each user and become inacces-
sible.

Update a published app
After you publish your app, you can make changes to it if you are an app workspace admin or a
member with edit rights. For this, you need to go to the app workspace and make the changes
you want; once you have made the changes, you need to go back to the app workspace list of
contents and click Update App. You can also update the Details, Content, and Access settings
that you configured when you created the app. Clicking Update App will open the Ready to
update dialog box, where you will need to click Update to propagate the app changes.

Note that in the Access tab, you will see the app link, as well as dashboard links. When you
share any of those links, users will see all contents of the app, not just dashboards or reports.

Package dashboards and reports as apps
When creating or updating an app, you have an option to exclude some dashboards or reports
from the app. In the app workspace view, shown in Figure 3-47, there is an Included in App
switch next to each dashboard, report, and workbook; datasets are automatically included
in apps. To exclude an item from the app, you need to click on the relevant Included In App
switch. If you are excluding items from an app that has already been published, you will need
to update the app.

When you exclude a report that was used to create a tile in a published dashboard, you will
see a warning like the one shown in Figure 3-53.

FIGURE 3-53 Report exclusion warning

This warning does not prevent you from publishing the app, but the dashboard that is
using the report may display an error message at the top of it, and the affected tiles won’t be
displayed correctly. The error message is shown in Figure 3-54.

From the Library of zhanl mamykova

https://docs.microsoft.com/en-us/power-bi/service-install-use-apps
https://docs.microsoft.com/en-us/power-bi/service-install-use-apps

ptg999

 328 CHAPTER 3 Configure dashboards, reports, and apps in the Power BI Service

FIGURE 3-54 Dashboard tiles error

Clicking on the Show Error(s) hyperlink highlights the affected tiles.

MORE INFO CREATING APPS

For a detailed overview on how to create apps, including a video introduction and frequent-
ly asked questions, see “Create and publish apps with dashboards and reports in Power BI”
at https://docs.microsoft.com/en-us/power-bi/service-create-distribute-apps.

Thought experiment

In this thought experiment, demonstrate your skills and knowledge of the topics covered in this
chapter. You can find answers to this thought experiment in the next section.

You are the BI developer at Adventure Works responsible for enabling report creation and
sharing by business users. Currently, there is an on-premises data warehouse built with SQL
Server 2017, and there are some files stored on a shared drive that contain sales targets. The
files are updated manually on a weekly basis. All reports need to be refreshed automatically at
least once a day.

Everyone in the organization has a Power BI Pro license. Adventure Works has a hot desking
policy, and all employees must lock their laptops in allocated cabinets.

Some business users would like to be able to create their own reports and share them inter-
nally. Only a select group of users must have the rights to share reports externally.

Adventure Works has a separate manager for each product category. One of the reports
must be secured in such a way that each manager must be able to see the products of the cat-
egory they manage only, while the CEO must be able to see all sales. An HR analyst maintains a
table that maps the category name to the manager email address.

The management requested your assistance in making sure that business users can create
and share their Power BI reports within the organization.

Based on background information and business requirements, answer the following ques-
tions:

1. Business users ask your guidance on how they should configure automatic refresh.
Which gateway installation mode is appropriate for Adventure Works?

A. On-Premises Data Gateway.

B. On-Premises Data Gateway (Personal Mode).

From the Library of zhanl mamykova

https://docs.microsoft.com/en-us/power-bi/service-create-distribute-apps

ptg999

 Thought experiment answers CHAPTER 3 329

2. How can you make sure that each category manager can see sales of their category only
and allow the CEO to see all sales in a single report? Your solution must involve minimal
effort.

A. Create one report for each category manager, with a different category filter in each
report, and a separate report for the CEO.

B. Configure dynamic row-level security and a separate role for the CEO.

C. Create a category slicer in the report.

3. The CEO wants to share the environmental report created in Power BI with external
users. The report does not contain any sensitive data. How can this be achieved? Your
solution must involve minimal effort.

A. Invite the external users in Adventure Works Active Directory.

B. Add the external users into an app workspace.

C. Use the Publish To Web feature.

4. A business user reports that Q&A does not work on a certain dashboard. Which of the
following is NOT a possible reason for this?

A. Q&A is disabled for this dashboard.

B. The only data source uses DirectQuery.

C. There is a custom visual in one of the tiles.

D. Row-level security is enabled for all datasets used in the dashboard.

5. A business user wants to distribute a set of reports with certain users. The reports were
created in an app workspace. What is the best way to share the reports? Your solution
must involve minimal effort for all parties involved.

A. Share each report with each user.

B. Create a security group containing all necessary users and share reports with the
security group.

C. Invite all users in the app workspace with the reports.

D. Create an app and install it automatically.

Thought experiment answers

1. The answer is A. Because users need to lock their laptops away each night, a personal
gateway is not a good choice. Furthermore, because the users need to use the same
data sources, installing gateways in personal mode is going to create extra work com-
pared to installing a single data gateway.

2. The answer is B. Creating separate reports for each manager will duplicate the reports
and make it difficult to maintain them. Creating a slicer in the report is not going to
secure data at all. Dynamic row-level security is the most appropriate choice given that

From the Library of zhanl mamykova

ptg999

 330 CHAPTER 3 Configure dashboards, reports, and apps in the Power BI Service

there is a table that can be used to filter categories based on the active username. The
CEO can have a separate role to view everything.

3. The answer is C. Because the users with whom the report should be shared with might
change over time, it is best to publish the report to web. Adding external users to Active
Directory or an app workspace would involve extra costs.

4. The answer is C. Custom visuals do not interfere with the Q&A feature. On the other
hand, Q&A box might disappear if it is disabled, the data source uses DirectQuery, or
there is row-level security configured.

5. The answer is D. Having an app installed automatically adds it to the Apps section of
Power BI service, which is an advantage compared to sharing the reports individually.
Sharing reports with each user individually can take time and be error-prone because
the user who shares will need to type all emails. A security group is preferred over typ-
ing email individually, because it can be maintained separately from Power BI service,
but each report will still need to be shared individually. Inviting users to app workspaces
should be done for collaboration purposes; it is not required when users need to only
view reports.

Chapter summary
 ■ To access on-premises data from Power BI service, also known as PowerBI.com, you

need to install a data gateway. A data gateway is a piece of software that acts as a
bridge between your on-premises data and Power BI service.

 ■ After you install a gateway, you will need to add each data source in your gateway, and
for each data source, you will need to add users so that they can use the data source in
their reports published to Power BI service.

 ■ When you have a gateway with data sources configured, you can schedule refresh for
your datasets, which keeps your reports and dashboards up to date.

 ■ You can publish your reports to Power BI service from Power BI Desktop; this will create
a dataset and a report in Power BI service with the same name as your Power BI Desktop
file. If you already have a dataset with the same name, you will be asked if you want to
replace it.

 ■ Reports published to Power BI service can be edited in Power BI service directly, though
you can only edit the report layout in this way. If you want to change the data model by
adding a measure, for example, you will need to download a .pbix copy of the report
and edit in Power BI Desktop.

 ■ In Power BI service, you can create dashboards by pinning report visuals; the dashboard
visuals are called tiles. Dashboards differ from reports by having only one page and
being able to combine tiles from multiple datasets. In addition to report visuals, you can
also create tiles with static content, like text and images.

From the Library of zhanl mamykova

http://PowerBI.com

ptg999

 Chapter summary CHAPTER 3 331

 ■ Dashboard tiles can link to specific Power BI reports of your choice, or you can point
them to a custom URL.

 ■ You can perform natural language querying in Power BI service as well as Power BI
Desktop. To improve the accuracy of queries, you can create featured questions in
Power BI service and synonyms in Power BI Desktop.

 ■ Reports can be made publicly available by using the Publish to web feature; this way,
there is no security and anyone on the Internet can potentially access the report.

 ■ One of the ways to securely publish a report is to publish it to Microsoft SharePoint. The
users of the report will be authenticated with their Active Directory credentials and will
only be able to see the reports if you explicitly grant them access rights.

 ■ Power BI Report Server allows you to publish Power BI reports on-premises. There is
significant difference between functionality of Power BI service and Power BI Report
Server: for instance, it is not possible to edit reports in the browser in case of Power BI
Report Server. On the other hand, Power BI Report Server allows you to comment on
reports. Power BI Report Server uses a separate version of Power BI Desktop optimized
for it.

 ■ Instead of granting access to dashboards and reports to users one by one, you can cre-
ate a security group in Office 365 admin portal and add the relevant users to that group;
this way, you may specify just the security group when sharing Power BI content.

 ■ You can share dashboards and reports by themselves, or you can create an app work-
space and grant users access to it, where they will be able to access all content within the
app workspace.

 ■ Certain features, such as sharing and exporting data from reports and dashboards, can
be controlled in Power BI tenant settings. Each feature can be enabled or disabled for
the entire organization, or for a subset of the organization.

 ■ Row-level security is a feature that allows you to secure your data; the feature filters
rows based on the rules you specify in roles that you create in Power BI Desktop; you
then allocate users to the roles in Power BI service. You can test your roles both in Power
BI Desktop and Power BI service to see how your report appears to users. Row-level
security only works for users who have read-only access to data.

 ■ App workspaces, which are used for collaboration, are created in Power BI service; you
can grant members edit or read-only rights; in addition to members, you can appoint
admins who will always have edit rights and be able to add and remove members.

 ■ You can publish your app workspace contents, such as dashboards, reports, and work-
books, as an app and push it to users; alternatively, users with access rights can install
the app themselves. If you decide to make changes to your app, you can update it and
users will then see the updated content. You can choose which items to include in the
app before or after creating it.

From the Library of zhanl mamykova

ptg999

From the Library of zhanl mamykova

ptg999

333

Index

configuration 320–328
configuring access to 307–309
creating 321–322
editing 308
joining 321–322
managing 322
privacy 308–309, 320

ArcGIS Maps 237
area charts 227–228
Assume Referential Integrity setting 92
Autodetect functionality 93, 94
automatic date hierarchies 218–219
AVERAGE function 129
Azure Active Directory tenant 258
Azure AD app 258–259
Azure Blob Storage

connecting to 24
Azure Data Lake Store

connecting to 24
Azure HDInsight Spark

connecting to 28
Azure portal 256
Azure SQL database

connecting to 27
firewall rules 28

Azure SQL Data Warehouse
connecting to 27

B
bar charts 225–227
Barcode data type 245
bidirectional relationships 90, 317–318
binning 122–126
BLANK function 111
blank values 222

in Power Query 47–48

A
access

to app workspaces 307–309
to dashboards 305–307

Access database
connecting to 12–13

accessibility 252
Actual to Target measure 213–214
ADDCOLUMNS function 148–150
Add Tile button 281
Admin Portal

creating security groups using 302–305
Advanced Editor 34
aggregation functions 174–175
alignment

of visuals 246–247
ALLEXCEPT function 140
ALL function 136–140
ALLNOBLANKROW function 140
ALLSELECTED function 183–184
Analysis Services 312
Analysis Services Tabular 29
AND function 112
anonymous tables 169–170
Apply Changes button 85–86
apps

configuration 320–328
packaging dashboards and reports as 327–328
publishing 322–326
unpublishing 327
updating published 327

AppSource window 326
app workspaces 259, 304

admins 309
collaborating in 322

From the Library of zhanl mamykova

ptg999

334

 bookmarks

bookmarks 250–255
changing order of 252
creating 250
linking to images in 253
navigating 252–253
Selection pane 251–253
Spotlight 251

business needs
hierarchies based on 219–221

business rules
applying 63–74
custom functions 69–70
privacy levels 71–75
query parameters 67–69

C
calculated columns 107–134

about 107
circular dependencies in 132–134
creating 107–108
DAX formulas for 107–132
evaluation context 128–132
grouping values 120–126
limitations of 173–174
ROW function 159
sort order 121–122
using LOOKUPVALUE 119–121
using variables in 126–128
vs. measures 175

calculated tables 8, 134–172
ADDCOLUMNS function 148–150
ALL function 136–140
CALCULATETABLE function 140–143
CALENDARAUTO function 157–159
CALENDAR function 157–159
creating 134
CROSSJOIN function 152–153
DATATABLE function 168–170
DISTINCT function 143–144
duplicating 134
EXCEPT function 163–164
FILTER function 134–136
GENERATEALL function 154–156
GENERATE function 154–156
GENERATESERIES function 154–156
INTERSECT function 161–163
NATURALINNERJOIN function 164–166

NATURALLEFTOUTERJOIN function 167–168
SELECTCOLUMNS function 148–150
SUMMARIZECOLUMNS function 147
SUMMARIZE function 144–147
TOPN function 151–152
UNICHAR function 156
UNION function 159–161
using variables in 170–172
VALUES function 143–144

CALCULATE function 130–132, 138, 142, 143, 179–184
CALCULATETABLE function 132, 140–143, 172
CALENDARAUTO function 157–159
CALENDAR function 157–159, 172
capacity management 256
Card visual 207
caret character delimiter 64
Change Column Type dialog box 76
Change Source button 85
charts

area 227–228
bar 225–227
combo 228–229
donut 232
funnel 237–238
line 227
pie 232
ribbon 229
scatter 231–232
treemap 233–234
waterfall 230

circular dependencies 132–134
CLOSINGBALANCEMONTH function 187
CLOSINGBALANCEQUARTER function 187
CLOSINGBALANCEYEAR function 187
collaboration 305, 322
Column from Examples dialog box 60–61
columns

adding to support hierarchy 221–224
appending text strings to 49
applying business rules 63–74
calculated 7–8, 107–134
Conditional Column dialog box 62, 63
creating new 60–63
custom 107
Custom Column dialog box 61
custom data types 98
duplicating existing 62
filtering 52

From the Library of zhanl mamykova

ptg999

335

Data Analysis Expressions (DAX)

formatting 47–48, 101–102
grouping by 53
hiding 99–100
Include Relationship Columns option 36
Invoke Custom Function 61–62
key 99
merging 49, 65
null values in 59
referencing 109
relationship 10
relationships between 87–89
removing 35–37
renaming 49, 53, 150
reordering 49
sort order of 95–98, 121–122
splitting 47–48
unpivoting 53

combo charts 228–229
comments

in DAX 210
Conditional Column dialog box 62, 63
content sharing 309–312
context transition 130, 136
Cortana 290
COUNTA function 176
COUNTAX function 177
COUNTBLANK function 177
COUNT function 176
count functions 176–178
COUNTROWS function 109, 129, 176, 177
COUNTX function 177
CPU-intensive formulas 175
Create Relationship window 95
Create Table window 102
credentials errors 276
Cross filter direction drop-down list 90
cross-filtering 240
cross-highlighting 240–241
CROSSJOIN function 152–153
CSV files 17–18
curly braces 104
custom applications 257
Custom Column dialog box 61
custom columns 107
custom functions

creating 69–70
custom hierarchies 219–221
custom layouts 257

custom reports 255–262
custom URLs 281, 283–284
custom visuals 261–262

D
dashboards

adding text and images in 279–282
configuration 279–290
configuring access to 305–307
copying 282
custom URL and title 283–284
filtering 282
packaging as apps 327–328
settings 283
sharing 305–307
tiles 279–282

data
accessing on-premises 271–279
changing format of 64–74
cleaning irregularly formatted 67
cleansing 74–77
compression 5
exporting 309–312
frequently changing 8
from multiple sources 5
importing 4–5, 9

from Excel 25
incomplete 74–75
manually entering 102–103
pivoting 64, xiv, 65
quality requirements 75–77
tabular 64
unpivoting 64, xiv, 65

Data Analysis Expressions 83
Data Analysis Expressions (DAX) 107. See also specific

functions
blank or null values in 111
calculated columns 107–132
calculated tables 134–172
circular dependencies in 132–134
comments in 210
counting values in 176–178
data types 110–112
evaluation context 128–132
features of 107
Formatter tool 115
grouping values 120–126

From the Library of zhanl mamykova

ptg999

336

databases

LOOKUPVALUE 118–120
measures 173–205
operators 112–113
table filter 313–314
Time Intelligence in 184–194
using variables in 126–128

databases
Access 12–13
Azure SQL 27–28
connecting to 2–4
connectivity modes 4
DirectQuery connectivity 5–6
MySQL 15
Oracle 13–14
PostgreSQL 15–16
SQL Server 10–12

data categories 244–245
data consumption process 2–32
data gateways

adding data sources to 273–276
connecting to data source using 272–276
data types and 274
installing 272–273
Schedule Refresh 276
settings 273

data modeling
in DirectQuery 7–8
with Live Connection 9

data models 83–105
defined 83
formatting columns 101–102
hide fields and tables 99–100
importing records into 105
manual data entry 102–103
optimizing for reporting 95–101
relationship management 84–94
using Power Query 104–106

data previews 34
datasets

pushing data into 259–261
data shaping 83. See also data source connections; See

also data transformations
data source connections 1–31

Access database 12–13
Azure Blob Storage 24
Azure Data Lake Store 24
Azure HDInsight Spark 28
Azure SQL database 27

Azure SQL Data Warehouse 27
connectivity modes 4–10
databases 2–4
DirectQuery 5–8, 9
files 2–4, 22–24
folders 2–4, 20–22
JSON files 18–19
Live Query 9–10
Microsoft SQL Server 10–12
MySQL database 15
Oracle database 13–14
PostgreSQL database 15–16
Power BI service 29–31
SQL Server Analysis Services 28–29
Text/CSV files 17–18
using data gateway 272–276
using generic interfaces 17
web pages 22–24
XML files 19–20

data sources
errors 274
refreshing 276

DATATABLE function 168–170
data transformations 31–72

advanced 52–56
appending queries 55–56
applying business rules 63–74
basic 44–51
creating new columns 60–63
designing and implementing 32–61
errors 45–46
for data visualization 64–74
merging queries 56–59
privacy levels 71–75
Trim transformation 76–77
with DirectQuery 7
with Power Query 32–54

data types 45
conversions 110–111, 113
DAX 110–112
gateways and 274

data visualizations 83
aligning 246–247
area charts 227–228
bar charts 225–227
bookmarks 250–255
categories with no data 242–243
changing data format to support 64–74

From the Library of zhanl mamykova

ptg999

337

files

changing visbility of 251
changing visibility of 252–253
combo charts 228–229
custom 261–262
data categories 244–245
default summarization 243–245
donut charts 232
duplicate pages 242
formatting 227
funnel charts 237–238
hyperlinks in 245
interactions between 239–241
interactive 225–255
line charts 227
maps 234–237
page layout and formatting 238–239
pie charts 232
positioning 245
report themes 254–255
ribbon charts 229
R visuals 247–249
scatter charts 231–232
selecting type of 225–238
sorting 246
treemap charts 233–234
waterfall charts 230

DATEADD function 189–191, 203–204
date formats 102
date functions 118
date hierarchies 217–219, 219–221
Date keyword 134
DATESBETWEEN function 193
DATESINPERIOD function 193–194
DATESMTD function 186
DATESQTD function 186
DATESYTD function 186–187
date tables 7
DAX language 31. See Data Analysis Expressions
default summarization 175, 243–245
DirectQuery 2, 4

about 5–6
advantages 6
data modeling in 7–8
data transformations with 7
implications of using 6–8
query types 7
report performance 6

security limitations 8
single data source with 6
when to use 8

disconnected tables
passing filters from 197–201

disk space 5
DISTINCTCOUNT function 178
DISTINCT function 143
distribution lists 304
donut charts 232
duplicate visuals 242
dynamic row-level security 316–318

E
EARLIER function 135
Edit Relationship window 88–89, 92
embed codes 292–293
embedded reports 257
empty strings 222
ENDOFMONTH function 189
ERROR function 204
errors

credentials 276
data source 274
handling 75–76
transformation 45–46

Excel
importing data from 25

Power View sheets 27
workbook contents 26–27

EXCEPT function 163–164
Export And Sharing settings 310–312
external users

sharing content with 309–312
extra spaces

removing 76–77

F
featured questions 286
fields

hiding 99–100
Fields pane 85–86
files

combining 21
connecting to 3, 22–24

From the Library of zhanl mamykova

ptg999

338

Fill Down feature

JSON 18–19
Text/CSV 17–18
XML 19–20

Fill Down feature 74
Filled Maps 236–237
Fill Up feature 74–75
FILTER ... ALL function 142
filter context 128–129, 131, 136, 173
FILTER function 134–136
filtering

dashboards 282
visuals 240

filter options
Power Query 54–55

filters
and relationships 90, 91
passing from disconnected tables 197–201
table 313–314

FIND function 114–115
firewalls

Azure SQL database 28
FIRSTDATE function 192–193
FIRSTNONBLANK function 196–197
fixing implicit measures 175
folders

connecting to 3, 20–22
SharePoint 22

FORMAT function 111
Format pane 216, 227
Formatter tool 115
formatting

columns 101–102
measures 249
reports 292
visuals 238–239
with report themes 254–255

formula bar 107–108
Formula Bar 33
fully qualified syntax 109
functionCOUNTROWS 178
functions. See also specific functions

aggregation 174–175
custom 61–62, 69–70
DAX

in calculated columns 113–118
editing 70
iterator 174
M 113

opening and closing balance 187–189
parent-child 8, 221–224
period to date 186–187
Time Intelligence 184–194

Funnel charts 237–238

G
Gauge visual 214–216
GENERATEALL function 154–156
GENERATE function 154–156, 172
GENERATE/ROW pattern 172
GENERATESERIES function 154–156, 205
generic interfaces

for data source connections 17
Go to Column 33
grouping values 120–126
Groups window 123, 125, 126

H
headers 45, 64
hierarchies

add columns to table to support 221–224
based on business needs 219–221
creating 217–224
custom 219–221
date 217–219, 219–221
drill down using 221
parent-child 221–224

highlighting
visuals 240–241

hyperlinks 245
adding to tiles 283–284
custom 281
in text boxes 284

I
IFERROR function 115
images

adding to dashboard 279–282
Image URL data category 245
inactive relationships 194–195
Include Relationship Columns option 36
IntelliSense 109
interactive visualizations 225–255

From the Library of zhanl mamykova

ptg999

339

one-to-many relationships

INTERSECT function 161–163, 197–199
Invoke Custom Function 61–62
ISCROSSFILTERED function 209–211
ISFILTERED function 209–211
iterator functions 174

J
JSON files

connecting to 18–19

K
keyboard shortcuts 252
key columns 99
Key Performance Indicators (KPIs) 206–216

calculate actual to target 213–214
calculate the actual 207–208
calculate the target 208–213
configure values for gauges 214–215
manually set values 216

L
LASTDATE function 192–193
LASTNOBLANK function 196–197
LEFT function 114
LEN function 113–114, 115
line charts 227
lists 104–105
Live Connection 4, 9–10
logical operators 112
LOOKUPVALUE 118–120
LOWER function 113, 116

M
mail-enabled security groups 304
Manage Embed Codes 292–293
Manage Relationships window 88–89
manual data entry 102–103
many-to-many relationships 90
many-to-one relationships 90
maps 234–237
mathematical functions 116–117
measures 7, 173–205

ALLSELECTED function 183–184
CALCULATE function 179–184

creating 173–175
FIRSTNONBLANK function 196–197
fixing implicit 175
formatting 249
LASTNOBLANK function 196–197
passing filters from disconnected tables 197–201
Quick Measures 201–205
SELECTEDVALUE function 195–196
vs. calculated columns 175
with virtual relationships 200

merging queries 56–59
metadata 5, 8
Microsoft SharePoint

publishing reports to 294–296
Microsoft SQL Server

connecting to 10–12
MID function 114
M language 31, 107

table construct 105–106
Modern Pages 294
MySQL database

connecting to 15

N
native queries 40
NATURALINNERJOIN function 164–166
natural language queries 284–290
NATURALLEFTOUTERJOIN function 167–168
Navigator window 10–11, 29
NEXTYEAR period 191
NodeJS 262
None button 241
non-printable characters

removing 76–77
NOT operator 112
Npgsql 15–16
null values 59

in DAX 111
in Power Query 47–48

O
Office 365 Admin Portal

creating security groups in 302–305
OneDrive for Business

connecting to files in 23–24
one-to-many relationships 90

From the Library of zhanl mamykova

ptg999

340

one-to-one cardinality

one-to-one cardinality 92
on-premises data

accessing 271–279
data gateways and 272–276

OPENINGBALANCEMONTH function 187–189
OPENINGBALANCEQUARTER function 187
OPENINGBALANCEYEAR function 187
Oracle database

connecting to 13–14
OR function 112, 141

P
page formatting 238–239
page layout 238–239
Page tabs 85–86
PARALLELPERIOD function 190–191
parameters

creating custom functions using 69–70
query 67–69
What If 205–206

parent-child functions 8
parent-child (PC) hierarchies 221–224
PATHCONTAINS function 224
PATH function 222
PATHITEM function 224
PATHITEMREVERSE function 224–225
PATHLENGTH function 222
.pbix files 278, 297
performance measurement 206–216

calculate actual to target 213–214
calculate the actual 207–208
calculate the target 208–213
configure values for gauges 214–215
manually set values 216

performance targets 206, 208–213
period to date functions 186–187
permissions 259
pie charts 232
pinning

tiles 279–282
Pivot Column dialog box 65
pivoted data 64
PostgreSQL database

connecting to 15–16
Power BI admin portal 310
Power BI App Registration tool 258–259

Power BI dashboards. See dashboards
Power BI Desktop 1–82

Analysis Services 29
cleansing data 74–77
collaboration in 305
custom functions in 70
custom reporting solutions 255–262
data source connections 1–31

Access database 12–13
Azure Blob Storage 24
Azure Data Lake Store 24
Azure HDInsight Spark 28
Azure SQL database 27
Azure SQL Data Warehouse 27
connectivity modes 4
databases, files, folders 2–4
DirectQuery 5–8, 9
files 22–24
folders 20–22
JSON files 18–19
Live Connection 9–10
Microsoft SQL Server 10–12
MySQL database 15
Oracle database 13–14
PostgreSQL database 15–16
SQL Server Analysis Services 28–29
Text/CSV files 17–18
using generic interfaces 17
web pages 22–24
XML files 19–20

data transformations 31–72
data visualizations in 225–255
development cycle 1–82
editing Power BI service reports using 277–279
Fill Down feature 74
Fill Up feature 74–75
formula bar 107–108
hierarchies 217–224
importing custom visuals 262–263
importing data into 4–5
importing from Excel 25–27
main window 84–85
optimized for Power BI Report Server 297
page layout and formatting in 238–239
privacy levels in 74
publishing reports to Power BI service from 277
Q&A feature in 287–288
query parameters 69
relationships in 86–94
role creation in 312–315

From the Library of zhanl mamykova

ptg999

341

relationships

service, connecting to 29–31
Time Intelligence in 184–194
using R in 249
versions of 297
viewing as roles in 315–316

Power BI Embedded 256–259
Power BI Gateway 272–276
Power BI permissions 259
Power BI Pro license 258
Power BI Report Server 296–301

adding comments to reports in 301
configuring 296
editing existing reports in 300
publishing reports to 296–301

Power BI REST API 259–261
Power BI service 271

assigning roles in 318–319
dashboard configuration 279–290
editing reports 277–279
on-premises data, accessing 271–279
publishing app in 322–326
publishing reports to 277
Publish to Web feature 291–294
Q&A feature in 284–287
report security in 296
SharePoint Online and 294–296
viewing as roles in 319–320

Power Query Editor 18, 31
advanced transformations 52–56
appending queries 56–57
basic transformations 44–51
blank values in 47–48
components 33–36
custom functions 69–70
data types supported in 33–34
error fixing 45–46
inserting steps in 38
interface, using 35–43
lists in 104–105
merging queries 56–59
null values in 47–48
overview 32–35
privacy levels 71–75
query parameters 67–69
renaming steps in 38
reordering steps in 38–39
value filters 54–55
with data models 104–106

PREVIOUSYEAR function 191
privacy levels 71–75
Publish to Web feature 291–294

Q
Q&A feature 238, 283, 284–290
queries. See also Power Query Editor

appending 55–56
deleting 41
disabling loading of 42
duplicating 43
filtering 72–73
grouping into folders 44
merging 56–59
naming 41
native 40
natural language 284–290
Query Folding 40, 77
referencing 43
splitting 39–40
using synonyms in 288–290

Query Dependencies window 34, 42, 56–57
Query Folding 40, 77
query parameters 67–69
Query Properties window 42
Quick Measures 201–205

R
RAM 5
range notation 104
records 105
RELATED function 109, 130, 219, 221
RELATEDTABLE function 109, 130, 132
relationship columns 10
relationships

active 92–93
and filters 91
autodetecting 93, 94
bidirectional 90, 317–318
cardinality in 92
creating 89, 95
editing 88–90
filters and 90
in Power BI 86–94
many-to-many 90
many-to-one 90

From the Library of zhanl mamykova

ptg999

342

Relationships view

one-to-many 90
with multiple columns 87

Relationships view 86–87
Report canvas 84–85
reports

bookmarks for 250–255
commenting 301
custom 255–262
downloading 278–279
editing existing 300
editing Power BI service 277–279
embedded 257
embedding 295
embedding in custom applications 257–258
formatting 292
packaging as apps 327–328
pinning from 281
publishing

to Microsoft SharePoint 294–296
to Power BI Report Server 296–301
to Power BI service 277
to web 291–294

security 295–296
sharing 305–307
themes 254–255, 280
URLs 294

Reset Layout button 87
ribbon charts 229
Ribbons pane 84–85
RIGHT function 114
role-playing dimensions 87
roles

assigning in Power BI service 318–319
creating 312–315
defining table filter DAX expressions for 313–314
duplicating 314–315
testing 320
viewing as, in Power BI Desktop 315–316
viewing as, in Power BI service 319–320

row context 128–130, 131
ROW function 159
Row-Level Security 92, 282

Analysis Services and 312
assigning roles in Power BI service 318–319
configuring 312–320
dynamic 316–318
role creation 312–315
syntax errors 314

viewing as roles 315–316, 319–320
workspace privacy and 320

rows
filtering 54
removing 45–46
sorting 49

R visuals 247–249

S
SAP Business Warehouse (BW) 5, 7, 30
SAP HANA 30
scalar values 113, 170
Scale table 106
scatter charts 231–232
Schedule Refresh in Power BI 9
SEARCH function 114
security

app workspace access 307–309
dashboard access 305–307
DirectQuery 8
export and sharing settings 309–312
Publish to Web feature and 292
report 295–296
row-level 92, 282, 312–320

security groups
adding members to 304
creating 302–305
editing 303–304
mail-enabled 304

SELECTCOLUMNS function 148–150
SELECTEDVALUE function 195–196
SELECTEDVALUES function 206–207
Selection pane 251–253
Shape Maps 237
SharePoint

publishing reports to 294–296
SharePoint folders

connecting to 22
slicers 183
Sort by another column error 121
Sort by Column feature 95–98
sort order

columns 95–98
Spotlight effect 251
SQL Server 7

failover support 10

From the Library of zhanl mamykova

ptg999

343

workspace privacy

SQL Server Analysis Services (SSAS) 9, 204
connecting to 28–29

SQL Server data source 276
SUBSTITUTE function 115–116, 116
SUM function 129
SUMMARIZECOLUMNS function 147
SUMMARIZE function 144–147
Sum of Scale Calculate column 130, 131
SWITCH function 120–122, 122
SWITCH TRUE pattern 122
synonyms

in queries 288–290

T
tables. See also columns; See also rows

adding columns to support hierarchy 221–224
anonymous 169–170
calculated 8, 134–172
creating new columns 60–63
date 7
defining table filter DAX expressions for 313–314
disconnected 197–201
filtering 136
filters 313–314
hiding 99–100
inactive relationships between 194–195
M constructs 105–106
moving 87
relationships between 86–94
resizing 87
transposing 52

tabular data 64
Tenant settings 309–312
text

adding to dashboard 279–282
Text/CSV files

connecting to 17–18
text functions 113–116
themes

report 254–255, 280
tiles

adding links to 283–284
pinning 279–282
titles for 283–284

time functions 118

Time Intelligence 184–194
Tooltips field 215–216
TOPN function 151–152
transformations. See data transformations
TREATAS function 199, 201
treemap charts 233–234
TRIM function 113
Trim transformation 76–77

U
UNICHAR function 156
UNION function 159–161
UPPER function 113, 116
URLs

custom 281, 283–284
report 294

USERELATIONSHIP function 87, 194–195
USERNAME function 316
USERPRINCIPALNAME function 316

V
VALUES function 143–144
variables

DAX 126–128, 170–172
in calculated tables 170–172

VertiPaq engine 5, 6
View As Roles feature 315–316
View buttons 84–85
visualizations. See data visualizations
Visualizations pane 84–85

W
waterfall charts 230
web

publishing reports to 291–294
web pages

connecting to 22–24
web scraping 23
Web URL data category 245
weighted averages 175
What If parameters 205–206
WHERE clause 73
workspace privacy 320

From the Library of zhanl mamykova

ptg999

344

XML files

X
XML files

connecting to 19–20
xVelocity 5

From the Library of zhanl mamykova

ptg999

Get the latest news from Microsoft Press sent to
your inbox.

• New and upcoming books

•	 Special	offers

• Free eBooks

• How-to articles

Sign up today at MicrosoftPressStore.com/Newsletters

Hear about
it first.

From the Library of zhanl mamykova

http://MicrosoftPressStore.com/Newsletters

ptg999
• Hundreds of titles available – Books, eBooks, and online

resources from industry experts

• Free U.S. shipping

• eBooks in multiple formats – Read on your computer,
tablet, mobile device, or e-reader

• Print & eBook Best Value Packs

• eBook Deal of the Week – Save up to 60% on featured titles

• Newsletter and special offers – Be the first to
hear about new releases, specials, and more

• Register your book – Get additional benefits

microsoftpressstore.com

Visit us today at

From the Library of zhanl mamykova

http://microsoftpressstore.com

	Cover
	Title Page
	Copyright Page
	Contents at a glance
	Contents
	Acknowledgements
	About the author
	Introduction
	Organization of this book
	Microsoft certifications
	Microsoft Virtual Academy
	Quick access to online references
	Errata, updates, & book support
	Stay in touch
	Important: How to use this book to study for the exam

	Chapter 1 Consuming and transforming data by using Power BI Desktop
	Skill 1.1: Connect to data sources
	Connect to databases, files, and folders
	Data connectivity modes
	Importing data
	DirectQuery
	Implications of using DirectQuery
	When to use DirectQuery
	Live Connection
	Connecting to Microsoft SQL Server
	Connecting to Access database
	Connecting to an Oracle database
	Connecting to a MySQL database
	Connecting to PostgreSQL database
	Connecting to data using generic interfaces
	Connecting to Text/CSV files
	Connecting to JSON files
	Connecting to XML files
	Connecting to a Folder
	Connecting to a SharePoint folder
	Connecting to web pages and files
	Connecting to Azure Data Lake Store and Azure Blob Storage

	Import from Excel
	Import data from Excel
	Import Excel workbook contents

	Connect to SQL Azure, Big Data, SQL Server Analysis Services (SSAS)
	Connecting to Azure SQL Database and Azure SQL Data Warehouse
	Connecting to Azure HDInsight Spark
	Connecting to SQL Server Analysis Services (SSAS)
	Connecting to Power BI service

	Skill 1.2: Perform transformations
	Design and implement basic and advanced transformations
	Power Query overview
	Using the Power Query Editor interface
	Basic transformations
	Advanced transformations
	Appending queries
	Merging queries
	Creating new columns in tables

	Apply business rules
	Change data format to support visualization

	Skill 1.3: Cleanse data
	Manage incomplete data
	Meet data quality requirements

	Thought experiment
	Thought experiment answers
	Chapter summary

	Chapter 2 Modeling and visualizing data
	Skill 2.1: Create and optimize data models
	Manage relationships
	Optimize models for reporting
	Manually type in data
	Use Power Query

	Skill 2.2: Create calculated columns, calculated tables, and measures
	Create DAX formulas for calculated columns
	Calculated tables
	Measures
	Use What-if parameters

	Skill 2.3: Measure performance by using KPIs, gauges, and cards
	Calculate the actual
	Calculate the target
	Calculate actual to target
	Configure values for gauges
	Use the format settings to manually set values

	Skill 2.4: Create hierarchies
	Create date hierarchies
	Create hierarchies based on business needs
	Add columns to tables to support desired hierarchy

	Skill 2.5: Create and format interactive visualizations
	Select a visualization type
	Configure page layout and formatting
	Configure interactions between visuals
	Configure duplicate pages
	Handle categories that have no data
	Configure default summarization and data category of columns
	Position, align, and sort visuals
	Enable and integrate R visuals
	Format measures
	Use bookmarks and themes for reports

	Skill 2.6: Manage custom reporting solutions
	Configure and access Microsoft Power BI Embedded
	Enable developers to create and edit reports through custom applications
	Enable developers to embed reports in applications
	Use the Power BI API to push data into a Power BI dataset
	Enable developers to create custom visuals

	Thought experiment
	Thought experiment answers
	Chapter summary

	Chapter 3 Configure dashboards, reports, and apps in the Power BI Service
	Skill 3.1: Access on-premises data
	Connect to a data source by using a data gateway
	Publish reports to the Power BI service from Power BI Desktop
	Edit Power BI service reports by using Power BI Desktop

	Skill 3.2: Configure a dashboard
	Add text and images
	Filter dashboards
	Dashboard settings
	Customize the URL and title
	Enable natural language queries

	Skill 3.3: Publish and embed reports
	Publish to web
	Publish to Microsoft SharePoint
	Publish reports to a Power BI Report Server

	Skill 3.4: Configure security for dashboards, reports, and apps
	Create a security group by using the Admin Portal
	Configure access to dashboards and app workspaces
	Configure the export and sharing setting of the tenant
	Configure row-level security

	Skill 3.5: Configure apps and apps workspaces
	Create and configure an app workspace
	Publish an app

	Thought experiment
	Thought experiment answers
	Chapter summary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

